已知递增数列{an}的前n项和为Sn,且满足a1=1,4Sn-4n+1=an2.设bn=1求详解,感激不尽.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:45:17
已知递增数列{an}的前n项和为Sn,且满足a1=1,4Sn-4n+1=an2.设bn=1求详解,感激不尽.
xT[OA+ FSי./3{U;T1QLP1#*F&*-wn˓33eA%;ssζ\>,,mM܎{*Ǔ LZvj2 WNӤpθg=26V?iRWFFK9i*Uj+cG5'S*u熞gxk,+$a̰G B/@nGlO=YR}bZ;%ð,[Ţoa^fa}b=|@-/}z 2G BH.&OԯPZI0^#ًd@=Bh7'4+=3.q1Whcrtkr@ k ʺ '8HA'9]lY f;Po5wײ%v;rwj&xe1<~0),-T COhb#sWZBs]2fk/ri85wjz $$6

已知递增数列{an}的前n项和为Sn,且满足a1=1,4Sn-4n+1=an2.设bn=1求详解,感激不尽.
已知递增数列{an}的前n项和为Sn,且满足a1=1,4Sn-4n+1=an2.设bn=1

求详解,感激不尽.

已知递增数列{an}的前n项和为Sn,且满足a1=1,4Sn-4n+1=an2.设bn=1求详解,感激不尽.
1.
n≥2时,
4Sn-4n+1=an² (1)
4S(n-1)-4(n-1)+1=a(n-1)² (2)
(1)-(2)
4[Sn-S(n-1)]+4=an²-a(n-1)²
4an-4=an²-a(n-1)²
an²-4an+4=a(n-1)²
(an -2)²=a(n-1)²
|an-2|=|a(n-1)|
数列为递增数列,又a1=1>0,an≥1
|an-2|=a(n-1)
an-2=a(n-1)或an-2=-a(n-1)
an=a(n-1)+2或an=2-a(n-1)
an=2-a(n-1)时,a2=2-a1=2-1=1=a1,与已知数列是递增数列矛盾,舍去
因此只有an-2=a(n-1)
an-a(n-1)=2,为定值
数列{an}是以1为首项,2为公差的等差数列
2.
an=1+2(n-1)=2n-1
[am²+a(m+1)²-a(m+2)²]/[ama(m+1)]
=[(2m-1)²+(2m+1)²-(2m+3)²]/[(2m-1)(2m+1)]
=(4m²-12m-7)/[(2m-1)(2m+1)]
=(2m+1)(2m-7)/[(2m-1)(2m+1)]
=(2m-7)/(2m-1)
=(2m-1-6)/(2m-1)
=1- 6/(2m-1)
要[am²+a(m+1)²-a(m+2)²]/[ama(m+1)]为整数,6/(2n-1)为整数,6能被2n-1整除
6=1×6=2×3
令2m-1=1,解得m=1;
令2m-1=6,解得m=7/2,不是整数,舍去
令2m-1=2,解得m=3/2,不是整数,舍去
令2m-1=3,解得m=2
综上,得m=1或m=2
3.
bn=1/[ana(n+1)]=1/[(2n-1)(2n+1)]=(1/2)[1/(2n-1)-1/(2n+1)]
Tn=b1+b2+...+bn
=(1/2)[1/1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]
=(1/2)[1- 1/(2n+1)]
=n/(2n+1)
λTn

已知数列{an}的前n项和为sn,且满足sn=n 已知递增数列{an}的前n项和为Sn,且a1>1,10Sn=(2an+1)(an+2)n属于N*,求数列{an}通项公式求详解, 已知数列{an}的前n项和为Sn,且Sn=lgn 求通项公式 已知数列an的前n项和为Sn,且An=3^n+2n,则Sn等于 1.已知数列an的前n项和为Sn,且Sn=2^n,求通项an;2.已知数列an的前n项和为Sn,且Sn=n^2+3n,求通项an; 已知数列{an}前n项和为Sn且S2=3,2Sn=n+nan,数列{bn}是递增的等比数列且b1+b4=9已知数列{an}前n项和为Sn且S2=3,2Sn=n+nan,数列{bn}是递增的等比数列且b1+b4=9,b2*b3=8(1)求数列{an},{bn通项公式}(2)求Tn=a1b1+a2b2+…a 已知数列{an}的前n项和为Sn,且an=n2的n次方,则Sn= 已知{an}的前n项和为Sn,且an+Sn=4求证:数列{an}是等比数列 已知等差数列{an},是递增数列,且an不等于0,n属于N,其前n项和为Sn,若S7*S8 已知等差数列{an},是递增数列,且an不等于0,n属于N,其前n项和为Sn,若S7*S8 已知数列An是一个递增的等比数列,数列的前n项的和为Sn,且A2=4,S3=14,若Cn=log2An,求数列CnCn+1分之1的前n项之和Tn 已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N*),求数列{an}的通项公式. 已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列 已知数列 an的前 n项和为Sn=n-5an-85 ,且n属于N* ,(1 已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn-1 已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an 已知数列an的前n项和为Sn,且Sn=2(an-1),则a2等于 已知数列{an}的前n项和为Sn,且Sn=3an+1则a4=?