求证:(tan(α+β)-tanα)\(1+tanα*tan(α+β))=sin2β\2(cosβ)^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 02:12:00
求证:(tan(α+β)-tanα)\(1+tanα*tan(α+β))=sin2β\2(cosβ)^2
x){F+

求证:(tan(α+β)-tanα)\(1+tanα*tan(α+β))=sin2β\2(cosβ)^2
求证:(tan(α+β)-tanα)\(1+tanα*tan(α+β))=sin2β\2(cosβ)^2

求证:(tan(α+β)-tanα)\(1+tanα*tan(α+β))=sin2β\2(cosβ)^2
左式=tan(α+β-α)=tanβ
右式=(2sinβcosβ)/[2(cosβ)^2]
=sinβ/cosβ=tanβ
故左式=右式,得证.

两边同时平方