求证:(sin2x)(1+tanx*tan(x/2))/2cosx=tanx图片上后面少打了个 =tan x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 19:13:38
求证:(sin2x)(1+tanx*tan(x/2))/2cosx=tanx图片上后面少打了个 =tan x
xQ]K@+Âe֝$;/_,"TMRgR]P[K(P o"fgON*-{Ι;~09ݹ}=z=WI f,-Zfk["SEP&l_E|3_Ͼ o)I?_AUD׷‡y'+@1F/ԆqC$~ڜ%Y[dp+N$f<,۞=ۆ*YI"]2q#ewB.)F\H )f.0xhwyG"0 2IQInSyq;rA w vvQ"=98b& 13rj˿_=/zt`xN>^4M#RXFUF=h:mTa^5R9(J-fa

求证:(sin2x)(1+tanx*tan(x/2))/2cosx=tanx图片上后面少打了个 =tan x
求证:(sin2x)(1+tanx*tan(x/2))/2cosx=tanx

图片上后面少打了个 =tan x

求证:(sin2x)(1+tanx*tan(x/2))/2cosx=tanx图片上后面少打了个 =tan x
由倍角公式及半角公式有:
sin(2x)=2sin(x)cos(x)
tan(x/2)=(1-cos(x))/sin(x)
则,原式 = [2sin(x)cos(x)/2cos(x)]*{1+[sin(x)/cox(x)]*[(1-cos(x))/sin(x)]} = sin(x)*(1+(1-cos(x))/cos(x)) = sin(x)/cos(x) = tan(x)