求值域:y=3x/(x²+x+1)(x<0)的值域 答案是y∈[-3,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:53:10
求值域:y=3x/(x²+x+1)(x<0)的值域 答案是y∈[-3,0)
xPJ0~ mI\(E })zމ-EFeexτe/S2I)H8|~r<r<6LCFpwbp1 eKIzxIk΍1$}MIF͝( r0b,ib*5z.u_ Bـ<n˯n'`c%øہrq*-$oTuNO2։lbH_)rPgS- %G'Ԯմ'm

求值域:y=3x/(x²+x+1)(x<0)的值域 答案是y∈[-3,0)
求值域:y=3x/(x²+x+1)(x<0)的值域 答案是y∈[-3,0)

求值域:y=3x/(x²+x+1)(x<0)的值域 答案是y∈[-3,0)
y=3x/(x²+x+1)
=3/(x+1+1/x)
∵x0,-1/x>0
∴由均值定理有:
-x+(-1/x)≥2√[(-x)*(-1/x)]=2 (当且仅当-x=-1/x即x=-1时,取等号)
∴x1/(x+1+1/x)≥-1
即0>3/(x+1+1/x)≥-3
∴函数y=3x/(x²+x+1)的值域是0>y≥-3