解方程组:xy/(x+y)=1/27,yz/(y+z)=1/33,xz/(x+z)=1/30急
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:31:49
x){|i;~YڕF:UU NEH3xְ&Hl` Cl(wӎO{0
:OMWhWMR@f- dVB|]@z,!Oz?bg끌';VA
*[3`l͠^lx{iб@J efSm@ >
解方程组:xy/(x+y)=1/27,yz/(y+z)=1/33,xz/(x+z)=1/30急
解方程组:xy/(x+y)=1/27,yz/(y+z)=1/33,xz/(x+z)=1/30
急
解方程组:xy/(x+y)=1/27,yz/(y+z)=1/33,xz/(x+z)=1/30急
分别取倒数,得
1/x+1/y=27,1/y+1/z=33,1/z+1/x=30
相加,得1/x+1/y+1/z=90
再减上述每一个方程
解得1/z=63,1/x=57,1/y=60
所以x=1/57,y=1/60,z=1/63