2sin50+cos10(1+√3*tan10)/根号下1+cos10

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 05:02:14
2sin50+cos10(1+√3*tan10)/根号下1+cos10
xRN0RHGHMVO^'Fţ=)f!t=2o{3̓8?>-x@eʚuv1-N|'r ~[u>2 0Kk!1Є%C,z vڇڞ@.0100 Rm4= BP\6OրګK vFʈV>$+eeHؒUU*j.h:YBU*H$:n~6@,sm'

2sin50+cos10(1+√3*tan10)/根号下1+cos10
2sin50+cos10(1+√3*tan10)/根号下1+cos10

2sin50+cos10(1+√3*tan10)/根号下1+cos10
.分子=2sin50+cos10+根号3*sin10
=2sin50+2(sin10cos30+cos10sin30)
=2sin50+2sin40
=2sin40+2cos40
=2根号2*sin(40+45)
=2根号2*sin85
=2根号2*cos5,
而分母=根号[1+2(cos5)^2-1]
=根号2*cos5,
所以[2sin50+cos10(1+根号3*tan10)]/[根号(1+cos10)]
=(2根号2*cos5)/(根号2*cos5)
=2;

[2sin50°+cos10°(1+√3*tan10°)]/根号下(1+cos10°)
=[2sin50°+cos10°+√3sin10°]/√(1+sin80°)
=[2sin50°+2sin(10°+30°)]/√(sin40°+cos40°)^2
=2(sin40°+cos40°)/(sin40°+cos40°)
=2

=[2sin50+2(sin10cos30+cos10sin30)] / √[1+2(cos5)^2-1]
=[2sin50+2sin40] / √2*cos5
=[2sin40+2cos40] / √2*cos5
=[2√2*sin(40+45)] / √2*cos5
=[2√2*sin85] / √2*cos5
=2√2*cos5 / √2*cos5
=2