中值定理的证明题 f(x)在(a,b)内可导,f(a)=f(b)=0.证明:对任意实数m,有ξ,使f`(ξ)/ f(ξ)=m如题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:14:28
xőAN@+ۤPrU
эK4pi%XeS
Epbzby)
]h0%wdNKf=Ma<RC5 rhy&H(n>&nn"d}zNUEoӵ/̢ܡ9-2,X}8X:]9ުqd]j}`V1~ry rMX{ԟIieso#r*
中值定理的证明题 f(x)在(a,b)内可导,f(a)=f(b)=0.证明:对任意实数m,有ξ,使f`(ξ)/ f(ξ)=m如题
中值定理的证明题 f(x)在(a,b)内可导,f(a)=f(b)=0.证明:对任意实数m,有ξ,使f`(ξ)/ f(ξ)=m
如题
中值定理的证明题 f(x)在(a,b)内可导,f(a)=f(b)=0.证明:对任意实数m,有ξ,使f`(ξ)/ f(ξ)=m如题
证:
令g(x)=f(x)e^(-mx)初等函数性质有g(x)在[a,b]上连续在(a,b)内可导
且g(a)=g(b)=0
由罗尔定理知存在ξ属于(a,b)使得
g'(ξ)=0
即[f'(ξ)-mf(ξ)]e^(-mx)=0
又e^(-mx)!=0
则f'(ξ)-mf(ξ)=0
即f'(ξ)/ f(ξ)=m得证.
你的题不是很严格
急死我了…求大一中值定理与导数的应用这是大一的题.用到中值定理啦…高手帮帮忙…设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内存在一点﹩,使得f'(﹩)-f(﹩)=0.不会
高数中值定理证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明对任意给定的正数a和b,在(0,1)内存在不相等的实数ξ,η,使得a/f'(ξ)+b/f'(η)=a+b
与拉格朗日中值定理有关的一道证明题设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使(bf(b)-af(a))/(b-a)=f(ξ)+ ξf’(ξ)分析,本题关键是构造辅助函数,对于关系式中显含
中值定理的证明题 f(x)在(a,b)内可导,f(a)=f(b)=0.证明:对任意实数m,有ξ,使f`(ξ)/ f(ξ)=m如题
高数证明题:f(a)=0,f(b)=0,若在(a,b)内可导,f(x)+xf'(x)在(a,b)里有没有存在0点 并证明听说用中值定理可以证明 不过我还是不会 不太懂中值定理 c是怎么回事 我一定会采纳的
中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(...中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(a)=2a[f(a)-f(0)]
与中值定理有关的一道证明题设f(x),g(x)在(a,b)内可导,且f'(x)g(x)≠g(x)f'(x)求证f(x)在(a,b)内任意两个零点之间至少有一个g(x)的零点
拉格朗日中值定理的小小疑问拉格朗日中值定理:如果函数f(x)在闭区间[a ,b]上连续,在开区间(a ,b)内可导,那么在(a ,b)内至少有一点 & (a
高等数学证明题微分中值定理相关第一题:f(x)在[a,b]连续,(a,b)可导,证明至少存在一点x,满足2x[f(b)-f(a)]=(b平方-a平方)f'(x)第二题:f(x),g(x)都在[a,b]连续,(a,b)可微,又对于(a,b)内的x有g'(x)
利用中值定理证明等式设f(x)在[a b]上连续,在(a b)内可导a
关于微分中值定理的题,设 f(x) ,g(x) 在区间 [a,b] 上连续,并且在开区间 (a,b) 上可导,证明:若 f(a) >= g(a),并且对于所有x属于 (a,b)都有f'(x) >=g'(x),则对于所有x属于 [a,b] 都有f(x) >=g(x) 请用微分中值定
拉格朗日中值定理的问题证明拉格朗日中值定理要设一个辅助函数g(x)=[(f(b)-f(a))]/(b-a)×(x-a)+f(a)-f(x),f(x)在[a,b]连续,在(a,b)可导.那么,为什么g(x)也是在[a,b]连续,在(a,b)可导呢?
证明:设f(x)在[a,b]上连续,在(a,b)内可导,则(a,b)内至少存在一点c,使f(c)+cf'(c)=[bf(b)-af(a)]/(b-a)利用中值定理,
高等数学中:柯西中值定理的应用设函数f(x)在区间[a ,b]上连续,在(a ,b)内可导,证明在(a ,b)内至少存在一点m,使f’(m)=[f(m)- f(a)]/(b-m).注示:f’(m)即f(x)在x=m处的导数
高数微积分【中值定理】设f(x)在[a,b]上可微,且f(0)=0 |f’(x)|≤M|f(x)| M为正常数,证明f(x)=0在[0,1/(2M)]中反复用拉格朗日中值定理,能推出f在该区间内恒为0 关键就是这个
求问柯西中值定理的几何意义柯西中值定理设函数f(x)与函数g(x)满足:(1)在闭区间[a,b]:(2)在开区间(a,b):(3)在区间(a,b)内g'(ε)≠0.那么,在(a,b)内,至少存在一点ε,使得[f(b) - f(a)]/[g(b) - g(a)]=f'(ε)/
拉格朗日中值定理的证明题设在[a,b]上,lf''(x)l
用高等数学中值定理证明!帮帮忙了若函数f(x)在区间(a,b)内可导,且f'(x)>0.则f(x)在该区间内严格单调递增.请大侠们帮帮忙!