已知:如图,在RT△ABC中,∠C=90°,BD平分∠ABC,BD交AC于点D,DE⊥AB,且AD=2CD.求证;∠A=30°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:43:47
x_kPƿJ(.$'9Is2A/ K.Qƥ"xUnDW&Sƪ],~zN}ONA(.=ޗc+[7:ߡڻOnߞIo:~1&sXIk^qc=yaS0)<:MLFΆxyFʹ$1+ѽ+\ᚕՊE(f"8v=8<)>
$[ 1VM wi^Uִ
З@$j{ ?P$Sewt(Hr{4I3!ETYP
@+PtYعxŸ_Q\#!m
3??:"i{2p˳Kn;OY?P\Sgy/͇[V
8lї]'i6Wg+0{6,Wn`2W7^1z
已知:如图,在RT△ABC中,∠C=90°,BD平分∠ABC,BD交AC于点D,DE⊥AB,且AD=2CD.求证;∠A=30°
已知:如图,在RT△ABC中,∠C=90°,BD平分∠ABC,BD交AC于点D,DE⊥AB,且AD=2CD.求证;∠A=30°
已知:如图,在RT△ABC中,∠C=90°,BD平分∠ABC,BD交AC于点D,DE⊥AB,且AD=2CD.求证;∠A=30°
这个太简单了.
第一步 :角平分线上的点到两条边的距离相等.
所以 DC=DE 又因为AD=2DC 所以AD=2DE
第二步 :RT△AED中 AD=2DE 所以∠A=30°
第一步 :角平分线上的点到两条边的距离相等。
所以 DC=DE 又因为AD=2DC 所以AD=2DE
第二步 :RT△AED中 AD=2DE 所以∠A=30°
已知如图在RT△ABC中,∠ACB=90°,CA=CB
已知如图在RT△ABC中,∠ACB=90°,CA=CB
已知在Rt△ABC,∠C=90°,AC=30cm,BC=40cm.(1)如图(1),四边形EFGH是Rt△ABC的内接正方形(1)如图(1),四边形EFGH是Rt△ABC的内接正方形,求内接正方形的边长;如图(2),若在Rt△ABC中并排放置两个三角形,
如图,已知在Rt△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC的长.
已知如图,在Rt△ABC中.∠C=90°,AD平分∠BAC,CD=1.5,BD=2.5,求AC的长
已知:如图 ,在RT△ABC中,∠C=90°,∠BAC=30°.求证:BC=1/2AB
如图,已知在等腰Rt△ABC中,∠C=90°,AE平分∠CAB,BF⊥AE,求证:AE=2BF
如图 已知在RT△ABC中 ∠C=90° AB=6 AC=4 求直角三角形内切园半径
已知:如图,在Rt△ABC中,∠C=90°,D是AC的中点.求证:AB²+3BC²=4BD²
如图,已知在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:CD²=AD*DB
如图,已知在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:CD²=AD*DB
12.如图,在四边形BCDE中,∠C=∠BED=90度,∠B=60,延长CD,BE,得到Rt△ABC.已知CD=2,DE=1,求Rt△ABC的面积
如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD,BE,得到Rt△ABC,已知CD=2,DE=1,求Rt△ABC的面
如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD,BE,得到Rt△ABC,已知CD=2,DE=1,求Rt△ABC的面积
如图,在Rt△ABC中,∠C等于90°,图中有三个正方形,证明a=b+c?
如图,在Rt△ABC中,角C=90°
根据下列条件求sinA,cosA,tanA的值.(1)如图,Rt△ABC中,∠C=Rt∠,AC=3,AB=5.2)如图,在Rt△ABC中,∠C=Rt∠,根据下列条件求sinA,cosA,tanA的值.(1)如图1,在Rt△ABC中,∠C=Rt∠,AC=3,AB=5;(2)如图2,在Rt△ABC中,∠C=Rt∠,AC
如图,在Rt△ABC和Rt△A'B'C'已知∠C=∠C'=90°AB=A'B',AC=A'C'说明△ABC=△A'B'C'