试证适合xy+yz+zx=1的实数x,y,z必不能满足x+y+z=xyz

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 22:38:20
试证适合xy+yz+zx=1的实数x,y,z必不能满足x+y+z=xyz
xRJ@MIsO)H5ւ RVQ$4nv=d7Q o潙yY$g-> 1A"][2A [\g.&Y]7&`=o_1q6m\KVmfa".iڏ@Td!b)~oWNP :fZ0;=k,=%CMt$Q1Kݎ$-ka}Ѹ~SAV&:IwS`5&uk/ԥ_>uY<,E@X(<=l,\_cwU!Wּ|T:

试证适合xy+yz+zx=1的实数x,y,z必不能满足x+y+z=xyz
试证适合xy+yz+zx=1的实数x,y,z必不能满足x+y+z=xyz

试证适合xy+yz+zx=1的实数x,y,z必不能满足x+y+z=xyz
由xy+yz+zx=1得:
xy=1-yz-xz
由xyz=x+y+z得:
xy=x/z+y/z+1
则1-yz-xz=x/z+y/z+1
-yz-xz=x/z+y/z
x/z+y/z+yz+xz=0
假设xyz不为0 (易证假设xyz为0不成立,从略)
x+y+yz^2+xz^2=0
y(1+z^2)+x(1+z^2)=0
(1+z^2)(x+y)=0
在实数范围内(1+z^2)不为0
则x+y=0
代入xyz=x+y+z得
xyz=z
xy=1,在实数范围内与x+y=0不符
等式xy+yz+zx=1的x,y,z不能满足xyz=x+y+z