1/(x²+3x+2)+1/(x²+5x+6)+1/(x²+7x+12)=1/(3x) 解方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 18:17:49
x)3רPS6466F06C064ҴWh*XٴWt$S ;A&m@^t턧3(m!h7MP
|]cP=ٱžOvx{)XXqDq
5mJ+@1- @&@ [{:*t3FF`}FOw,{ںi|H\b}#PٌpZ-ةg_\gL bP
1/(x²+3x+2)+1/(x²+5x+6)+1/(x²+7x+12)=1/(3x) 解方程
1/(x²+3x+2)+1/(x²+5x+6)+1/(x²+7x+12)=1/(3x) 解方程
1/(x²+3x+2)+1/(x²+5x+6)+1/(x²+7x+12)=1/(3x) 解方程
1/(x²+3x+2)+1/(x²+5x+6)+1/(x²+7x+12)=1/(3x)
分解因子得:1/(X+1)-1/(X+2)+1/(X+2)-1/(X+3)+1/(X+3)-1/(X+4)=1/(3x)
化简得:1/(X+1)-1/(X+4)=1/(3x)
两边乘以(X+1)(X+4)3x 得:3x(X+4)-3x(X+1)=(X+1)(X+4)
3x.x+12x-3x.x-3x=x.x+5x+4
化简得:x.x-4x+4=0,(x-2)(x-2)=0,X1=X2=2
X=2带入原方程,验证X=2是原方程的根.