在三角形abc中,a/c=(根号3)-1,tanB/tanC=(2a-c)/c,求角A,B,tanB/tanC=(2a-c)/c=(2sinA-sinC)/sinC即sinB*cosC=2sinA*cosB-sinC*cosB所以,移项利用正弦的和角公式得sin(B+C)=2sinA*cosB=sinA所以cosB=1/2所以B=60而sinA/sinC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:46:42
在三角形abc中,a/c=(根号3)-1,tanB/tanC=(2a-c)/c,求角A,B,tanB/tanC=(2a-c)/c=(2sinA-sinC)/sinC即sinB*cosC=2sinA*cosB-sinC*cosB所以,移项利用正弦的和角公式得sin(B+C)=2sinA*cosB=sinA所以cosB=1/2所以B=60而sinA/sinC
xSN@~ǁ%i$'/HBDh,DODD$2m= 7/;;3~3L̤Hm3N6t@Qk:6,*L\ K T`#I+"SK*`ec7!Wa3xx/CiȨ_E;->Qh7N\YsOE o4$'-L># xP Fs$ sA38_21sr GVyPC[m Zv\ 4qC

在三角形abc中,a/c=(根号3)-1,tanB/tanC=(2a-c)/c,求角A,B,tanB/tanC=(2a-c)/c=(2sinA-sinC)/sinC即sinB*cosC=2sinA*cosB-sinC*cosB所以,移项利用正弦的和角公式得sin(B+C)=2sinA*cosB=sinA所以cosB=1/2所以B=60而sinA/sinC
在三角形abc中,a/c=(根号3)-1,tanB/tanC=(2a-c)/c,求角A,B,
tanB/tanC=(2a-c)/c=(2sinA-sinC)/sinC
即sinB*cosC=2sinA*cosB-sinC*cosB
所以,移项利用正弦的和角公式得sin(B+C)=2sinA*cosB=sinA
所以cosB=1/2
所以B=60
而sinA/sinC=根号3-1,所以sin(120-C)/sinC=根号3-1
所以cotC=2-根号3.所以C=75度,A=45度.B=60度赞同7| 评论
我看了你的解析过程可是有一点不懂为什么sin(B+C)=2sinA*cosB=sinA这里的sin(B+C)=sinA

在三角形abc中,a/c=(根号3)-1,tanB/tanC=(2a-c)/c,求角A,B,tanB/tanC=(2a-c)/c=(2sinA-sinC)/sinC即sinB*cosC=2sinA*cosB-sinC*cosB所以,移项利用正弦的和角公式得sin(B+C)=2sinA*cosB=sinA所以cosB=1/2所以B=60而sinA/sinC
由三角形内角和等于180度,即A+B+C=180度
故sin(B+C)=sin(180-A )=sin180*cosA-sinA*cos180=0*cosA-sinA*(-1)=sinA

我也不懂吧