分式化简:[(x+2)/(x^2-2x)-(x-1)/(x^2-4x+4)]/(x-4)/(x^3-2x^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 22:59:34
分式化简:[(x+2)/(x^2-2x)-(x-1)/(x^2-4x+4)]/(x-4)/(x^3-2x^2)
xQJ0} 6Fk&ۍؤI[[N w>mx+*Wsjqyx<4d !G`lZ iunº(>_n(i*OM+LR[] {ڊ 4*[>ʳ`/ϡSC [tRL^H( #8B40fTphbjdLVWCwIJnZ7U][˧WKfPN,&yix=ta0AIpmԶQn{㔱t<r:bbsdSp` &(B1)+ѯ`]zc9.pf{q! d? C

分式化简:[(x+2)/(x^2-2x)-(x-1)/(x^2-4x+4)]/(x-4)/(x^3-2x^2)
分式化简:[(x+2)/(x^2-2x)-(x-1)/(x^2-4x+4)]/(x-4)/(x^3-2x^2)

分式化简:[(x+2)/(x^2-2x)-(x-1)/(x^2-4x+4)]/(x-4)/(x^3-2x^2)
[(x+2)/(x^2-2x)-(x-1)/(x^2-4x+4)]/(x-4)/(x^3-2x^2)
=(x+2)x^2(x-2)/[x(x-2)(x-4)]-(x-1)x^2(x-2)/[(x-2)^2(x-4)]
=(x+2)x/(x-4)-(x-1)x^2/[(x-2)(x-4)]
=(x^3-4x-x^3+x^2)/[(x-2)(x-4)]
=x(x-4)/[(x-2)(x-4)]
=x/(x-2)

[(x+2)/(x^2-2x)-(x-1)/(x^2-4x+4)]/[(x-4)/(x^3-2x^2)]
=[(x+2)/x(x-2)-(x-1)/(x-2)^2]/[(x-4)/x^2(x-2)]
={[(x+2)(x-2)-x(x-1)]/x(x-2)^2}/[(x-4)/x^2(x-2)]
=[(x^2-4-x^2+x)/(x-2)]/[(x-4)/x]
=[(x-4)/(x-2)]/[(x-4)/x]
=x/(x-2)

x/(x-2)

附图:

x/(x-2)