简算 (1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50)/(1/26+1/27+...+1/50)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:41:50
x){
tii m
ʹlK N}J}#39T,aTOEl:*c
3NmZc
9@a]0
)ڏԘXB\D6Dn)1fCAz
@
u%`%dxL/.H̳
简算 (1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50)/(1/26+1/27+...+1/50)
简算 (1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50)/(1/26+1/27+...+1/50)
简算 (1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50)/(1/26+1/27+...+1/50)
(1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50)/(1/26+1/27+...+1/50)
=[(1-1/2 )+(1/3+1/5+...+1/49)-(1/4+1/6+1/8+……1/50)]/(1/26+1/27+...+1/50)
=[1/2+(1/3+1/5+...+1/49)-1/2*(1/2+1/3+1/4+……1/25)]/(1/26+1/27+...+1/50)
=[(1/2-1/4)+(1/3+1/5+...+1/49)-1/2(1/3+1/4+……1/25)]/(1/26+1/27+...+1/50)
=[1/4+1/2*(1/3+1/5+...+1/25)+(1/27+1/29+……1/49)]/(1/26+1/27+...+1/50)