如图,在平面直角坐标系中,矩形oabc的两边分别在x轴和y轴上,oa=8倍根号2(厘米),oc=8(厘米),现有两动点p,q分别从o,c同时出发,p在线段oa上沿oa方向以每秒根号2(cm)的速度匀速运动,q在线段co上沿co

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:30:45
如图,在平面直角坐标系中,矩形oabc的两边分别在x轴和y轴上,oa=8倍根号2(厘米),oc=8(厘米),现有两动点p,q分别从o,c同时出发,p在线段oa上沿oa方向以每秒根号2(cm)的速度匀速运动,q在线段co上沿co
xW]SV+mvڱcKE nX)lk﮽Å4M$@|@&4VG2W}$djMzٽ>pyt,qdelo޹o,on;ݫ~}Ov2jָ^mڗʽ-rQ֞ Y"km?Hsxyԭs,y͟:xuv8j;% }!\Rξy!~k_v-c%Γ{a;yDU|!m- ֛j\pGgv @b0SQDhZNg/hs,fT89^(r[v疍P"{A[e_i\^w8* sZ'PCc<`^HZguTcij}ҺT2%]'?͑e ^M%kWBQxVXX { oiYdJ.YTm߁Y`k2}Խ d qon_Ǽ?̗|P,zJ%׫]#F^)R!fX4h nDqMc 8 &Ivt[Ǩ~'}4 /-%̹aqcSE|%?|KOI`"o93ucHt Y8w%SJʰ΂ JݑU'nDn{p2y<,;cρnr(0tV<+Z|q(1[/̄e~OQ|39& 5~P{>KGҍ#I!0Œ۴6+9{p}Gh%>-$!iVBs㨻LDE} }x8+qe$G+&Yz(1qL0J.EO_B  reMҭ߁r 3\*> Aڏhp^0Q'F~۬ }:4;A{;ĚoTVIq.0jwA(B~;Ҫ O~a5i̛0#LJn< U.oSf!-eۤ@lbJ8VAmz@> z^-\wa\qo'O~e]AT (/3LeE9X5%?>rZ*%4 4fK BNe 6^{\'4 zYoWO>ՅZys'4+pbyeQ׸B,U_Ջ)6&#\t~,ytS 3[pL;d6zS:ĎYw8} 6%0)PpMm.-7W*Z#)*htQ /u-@,++:lblV~Yf8ٜVcKzcpO? b93ˁ0$/GʣQcp e7}CLdMmp ބ'ℜſQ u1[Mȴ$ /WQ󏍈`-9|eZbLQ62JvzS_x{ˠ|8[%g^m9@h:mp5Z^E8Mª<] &'m6sGV3+˂ }`a2hpm&${Ӷ [6 sz]|ݶ2z*;233O/;3g3R`p209U, 3535@crj"S}=OP=~D 3SLϋ QլFB E\L¹(R.&X&FC脐PHAJt.[1Ԉp>16$Fs EO4"7%7tɁ

如图,在平面直角坐标系中,矩形oabc的两边分别在x轴和y轴上,oa=8倍根号2(厘米),oc=8(厘米),现有两动点p,q分别从o,c同时出发,p在线段oa上沿oa方向以每秒根号2(cm)的速度匀速运动,q在线段co上沿co
如图,在平面直角坐标系中,矩形oabc的两边分别在x轴和y轴上,oa=8倍根号2(厘米),oc=8(厘米),现有两动
点p,q分别从o,c同时出发,p在线段oa上沿oa方向以每秒根号2(cm)的速度匀速运动,q在线段co上沿co方向以每秒1(cm)的速度匀速运动.设运动时间为t秒.(3)当三角形opq与三角形pab和三角形qpb相似时,抛物线y=(1/4)x^2+bx+c经过b,p两点,过线段bp上一动点m作y轴的平行线交抛物线于n,当线段mn的长取最大值时,求直线mn把四边形opbq分成两部分的面积之比.
希,火速.有急用的!

如图,在平面直角坐标系中,矩形oabc的两边分别在x轴和y轴上,oa=8倍根号2(厘米),oc=8(厘米),现有两动点p,q分别从o,c同时出发,p在线段oa上沿oa方向以每秒根号2(cm)的速度匀速运动,q在线段co上沿co
三角形opq与三角形pab和三角形qpb相似时,则OQ=8-t,OP=t根号2,PA=8倍根号2-t根号2,AB=8,有OQ:PA=OP:AB,整理得t^2-12t+32,解得t=4(t=8不合题意,舍去),所以P的坐标为(4倍根号2,0),B的坐标为(8倍根号2,8),代入y=(1/4)x^2+bx+c,求得抛物线的解析式y=(1/4)x^2-(2根号2)x+8,直线PB的解析式求得为y=(根号2)x-8,设M[x,(根号2)x-8],N为[x,(1/4)x^2-(2根号2)x+8],MN=(根号2)x-8-[(1/4)x^2-(2根号2)x+8]=(-1/4)(x-6根号2)^2+2
设直线MN交QP于H,直线MN把四边形OPBQ分成五边形OPMHQ和三角形MHB两部分,M的坐标为(6根号2,4),H的坐标为(6根号2,7),五边形OPMHQ的面积S1=三角形OPQ的面积+三角形PMQ的面积+三角形MHQ的面积=0.5*4*4根号2+0.5*4*6根号2+0.5*3*6根号2=29根号2,三角形MHB的面积=0.5*3*2根号2=3根号2,直线MN把四边形OPBQ分成两部分的面积之比=29:3

(1)∵CQ=t,OP=2t,CO=8,
∴OQ=8-t.
∴S△OPQ=12(8-t)•
2t=-
22t2+4
2t(0<t<8);(3分)
(2)证明:∵S四边形OPBQ=S矩形ABCO-S△CBQ-S△PAB
=8×8
2-
12×8
2t-
12×8×(8
2-
2t)=3...

全部展开

(1)∵CQ=t,OP=2t,CO=8,
∴OQ=8-t.
∴S△OPQ=12(8-t)•
2t=-
22t2+4
2t(0<t<8);(3分)
(2)证明:∵S四边形OPBQ=S矩形ABCO-S△CBQ-S△PAB
=8×8
2-
12×8
2t-
12×8×(8
2-
2t)=322;(5分)
∴四边形OPBQ的面积为一个定值,且等于322;(6分)
(3)当△OPQ与△PAB和△QPB相似时,△QPB必须是一个直角三角形,依题意只能是∠QPB=90°,
又∵BQ与AO不平行,
∴∠QPO不可能等于∠PQB,∠APB不可能等于∠PBQ,
∴根据相似三角形的对应关系只能是△OPQ∽△PBQ∽△ABP(7分),
∴OQAP=OPAB,
∴8-t8
2-
2t=
2t8,
解得:t1=4,t2=8
经检验:t=4是方程的解且符合题意,t=8不是方程的解,舍去;(从边长关系和速度考虑),
∴QO=4,
∴直线QB的解析式为:y=kx+b,
∴y=24x+4,
此时P(4
2,0);
∵B(8
2,8)且抛物线y=
14x2+bx+c经过B、P两点,
∴抛物线是y=
14x2-2
2x+8,直线BP是:y=
2x-8(8分).
设M(m,2m-8)、N(m,14m2-2
2m+8).
∵M在BP上运动,
∴4
2≤m≤8
2
∵y1=
14x2-2
2x+8与y2=
2x-8交于P、B两点且抛物线的顶点是P;
∴当4
2≤m≤8
2时,y1<y2(9分)
∴|MN|=|y1-y2|
=|14m2-22m+8-(2m-8)|
=2m-8-(14m2-22m+8)
=2m-8-14m2+22m-8
=-14m2+32m-16
=-
14(m-6
2)2+2,
∴当m=6
2时,MN有最大值是2;
∴设MN与BQ交于H点则M(6
2,4),H(6
2,7);
∴S△BHM=12×3×2
2=3
2
∴S△BHM:S五边形QOPMH=3
2:(32
2-3
2)=3:29
∴当MN取最大值时两部分面积之比是3:29.(10分)

收起

三角形opq与三角形pab和三角形qpb相似时,则OQ=8-t,OP=t根号2,PA=8倍根号2-t根号2,AB=8,有OQ:PA=OP:AB,整理得t^2-12t+32,解得t=4(t=8不合题意,舍去),所以P的坐标为(4倍根号2,0),B的坐标为(8倍根号2,8),代入y=(1/4)x^2+bx+c,求得抛物线的解析式y=(1/4)x^2-(2根号2)x+8,直线PB的解析式求得为y=(根号2)x-8,设M[x,(根号2)x-8],N为[x,(1/4)x^2-(2根号2)x+8],MN=(根号2)x-8-[(1/4)x^2-(2根号2)x+8]=(-1/4)(x-6根号2)^2+2

设直线MN交QP于H,直线MN把四边形OPBQ分成五边形OPMHQ和三角形MHB两部分,M的坐标为(6根号2,4),H的坐标为(6根号2,7),五边形OPMHQ的面积S1=三角形OPQ的面积+三角形PMQ的面积+三角形MHQ的面积=0.5*4*4根号2+0.5*4*6根号2+0.5*3*6根号2=29根号2,三角形MHB的面积=0.5*3*2根号2=3根号2,直线MN把四边形OPBQ分成两部分的面积之比=29:3

v

如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,c 如图在平面直角坐标系中,矩形OABC的顶点与顶点O坐标原点重合 如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC绕原点逆时针.如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC绕原点逆时针旋转90°,得到矩形OA'B' 如图,在平面直角坐标系中,矩形OABC的顶点坐标为(15,6),直线y=1x+b恰好将矩形OABC的面积分成相等如图,在平面直角坐标系中,矩形OABC的顶点坐标为(15,6),直线y=1/3x+b恰好将矩形OABC的面积 如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点O顺时针方向旋转90度(2008•吉林)如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点O 如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).如图,在平面直角坐标系中,四边形OABC是矩如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).(1)直接写出A、C两点 如图,在平面直角坐标系中,矩形OABC的顶点坐 标为(15,6),直线y=1/3x+b恰好将矩形如图,在平面直角坐标系中,矩形OABC的顶点坐 标为(15,6), 直线y=1/3x+b恰好将矩形OABC的面积分成相等 的两 如图,OABC是一张放在平面直角坐标系中的矩形纸片 如图 ,一张矩形纸片OABC平放在平面直角坐标系内. 如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10厘米,OC=6厘米 已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C、D的坐标分别为(9,0) 数学题解答如图,在平面直角坐标系中,a16,0.c0,8,四边形oabc是矩形,d,e分别是oa如图,在平面直角坐标系中,a16,0.c0,8,四边形oabc是矩形,d,e分别是oa,bc边上的点,沿着de折叠矩形,点a恰好落在y轴上得点c 【急求】如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每 如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10厘米,OC=6厘米,现有两动点P,Q分别从如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10厘米,OC=6厘米,现有两 好的加分!如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足 .如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足|OA-2|+(OC-2√3)²=0 . (1)求B、C两点的坐标;(2)把△ABC沿AC对折,点B落在 如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0),(3,4),动点M如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0),(3,4),动点M、N分别从点O、B同时出发, ,如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6), 如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=-... 如图,在平面直角坐标系中,矩形OABC顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的如图,在平面直角坐标系中,矩形OABC顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰