数列{an}中,an=n^2+n-56,数列{an}前n项和最小值时,n的值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 13:36:46
数列{an}中,an=n^2+n-56,数列{an}前n项和最小值时,n的值为
x){6uӎՉyOvI̳͋355A<{pI=4

数列{an}中,an=n^2+n-56,数列{an}前n项和最小值时,n的值为
数列{an}中,an=n^2+n-56,数列{an}前n项和最小值时,n的值为

数列{an}中,an=n^2+n-56,数列{an}前n项和最小值时,n的值为
an=n^2+n-56=(n-7)(n+8)
数列{an}前n项和最小值时
an0
即(n-7)(n+8)

由原式可知 an=n^2+n-56=(n-7)(n+8) ,n>=1. 当n<=7时an<=0,当n>7时an>0,由此可知当数列{an}前n项和最小值时,n的值为 7或 6