求极限lim(x→0) sin(1-x)/(1-x^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 21:23:34
求极限lim(x→0) sin(1-x)/(1-x^2)
xPN@YQ&~; Hl 1`5>B JәiWөѝ{>ԢNm;["R aW3 GE]'SLۃ`t?[ ;ޞXM:Z$7 Uy*Uľ]H@@e7K[%TcW@\GWO}.zu;5AmBk-aA%jE2-֙0i F:N:酵qW/'J6G y:G:

求极限lim(x→0) sin(1-x)/(1-x^2)
求极限lim(x→0) sin(1-x)/(1-x^2)

求极限lim(x→0) sin(1-x)/(1-x^2)
如果x是趋于0的,那极限值就是sin1
估计题目是x趋于1的吧?
如果x是趋于1的 可以用等价无穷小 sin(1-x)~(1-x)
原极限=lim(x→1) 1/1+x =1/2

lim(x→0) sin(1-x)/(1-x^2)
=lim(x→0) sin(1-x)/[(1-x)(1+x)]
=lim(x→0) 1/(1+x)
=1lim(x→0)sin(1-x)=0不是才能用lim(x→0)sinx/x=1吗x->0
x ~ sinx
sin(1-x) ~ 1-x不懂 明白点By Taylo...

全部展开

lim(x→0) sin(1-x)/(1-x^2)
=lim(x→0) sin(1-x)/[(1-x)(1+x)]
=lim(x→0) 1/(1+x)
=1

收起