若(cos2x)/[sin(x-π/4)]=(-根号2)/2,则cosx+sinx=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 19:13:06
x){ѽT#9بBS?83OB|f=|ڿN}#3
+*lm_`gCXuelArqF
@F~DM}#M.HT;X.XVET!C(FEU?lx{H6H~qAb(|
若(cos2x)/[sin(x-π/4)]=(-根号2)/2,则cosx+sinx=?
若(cos2x)/[sin(x-π/4)]=(-根号2)/2,则cosx+sinx=?
若(cos2x)/[sin(x-π/4)]=(-根号2)/2,则cosx+sinx=?
(cos2x)/[sin(x-π/4)]
=[(cosx)^2-(sinx)^2]/[((根号2)/2)sinx-((根号2)/2)cosx]
=(cosx-sinx)(cosx+sinx)/[-((根号2)/2)(cosx-sinx)]
=(cosx+sinx)/[-(根号2)/2]=-(根号2)/2,
所以 sinx+cosx= 1/2.