已知向量a={(根号3)sinx,cosx},b=(cosx,cosx),f(x)=2乘向量a乘向量b+2m-1(x,m属于R).1,求f(x)关于x的表达式,并求f(x)的最小正周期;2,若x属于[0,pai/2]时,f(x)的最小值为5,求m的值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:17:33
x){}KN?ѶZقOYW_\Qdby:iFOvꂳru
5*trndW_γM
O[7E*jypŋ}ysT(lN
.~:qų9m{iĨhL}gӷxڰɎ] {r@MR>q$w`xl /Qh@j[#GAyC#8#M!J
*@((diDl[ H9dڂbk
Vkkl_\g) =
已知向量a={(根号3)sinx,cosx},b=(cosx,cosx),f(x)=2乘向量a乘向量b+2m-1(x,m属于R).1,求f(x)关于x的表达式,并求f(x)的最小正周期;2,若x属于[0,pai/2]时,f(x)的最小值为5,求m的值.
已知向量a={(根号3)sinx,cosx},
b=(cosx,cosx),f(x)=2乘向量a乘向量b+2m-1(x,m属于R).
1,求f(x)关于x的表达式,并求f(x)的最小正周期;
2,若x属于[0,pai/2]时,f(x)的最小值为5,求m的值.
已知向量a={(根号3)sinx,cosx},b=(cosx,cosx),f(x)=2乘向量a乘向量b+2m-1(x,m属于R).1,求f(x)关于x的表达式,并求f(x)的最小正周期;2,若x属于[0,pai/2]时,f(x)的最小值为5,求m的值.
1.
f(x)
=2(√3sinxcosx+(cosx)^2)+2m-1
=√3sin2x+cos2x+2m
=2sin(2x+pi/6)+2m
最小正周期=pi
2.
x属于[0,pi/2]
f(x)最小值=2sin(2pi/2+pi/6)+2m=2m-1=5
m=3
已知向量a=(2根号3 sinx,cos^x),b=(cosx,2)函数f(x)=a*b
已知向量m=(根号3sinx,cos),向量n=(cosx,cosx),向量p=(2根号3,1).1)向量m // 向量p 求sinx乘cosx 的值
已知向量a=(cosx,sinx),向量b=(cosy,siny),|a-b|=2/5根号5,(1)求cos(x-y)的值.
已知向量a(cosx,sinx),b(根号2,根号2),ab=8ab=8/5,则cos(x-兀/4)=?
已知向量a=(2cosx,sinx)向量b={cos(x-π/3),√3cosx-sinx}求f(x)的解析式(详细一点)已知向量a=(2cosx,sinx),向量b={cos(x-π/3),√3cosx-sinx},设函数f(x)=向量a·向量b,求f(x)的表达式
已知向量a=(sinx,cosx)向量b=(1,根号3)则|a+b|最大值
已知向量a=(sinx,cosx)向量b=(1,根号3)则|a-b|最大值
a向量=(2sinX ,根号3) ,b向量=(cosX ,-2cos的平方+1) 求a乘b,
已知向量a=(2cosx,2sinx),向量b=(3,根号3)且向量a与向量b共线,则x=
已知向量a=(cosx,sinx),b=((根号3)cos,cos),f(x)=a乘b-2分之根号3.已知向量a=(cosx,sinx),b=((根号3cosx),cosx),若f(x)=a乘b-2分之根号3.(1)写出函数f(x)图像的一条对称轴方程;(2)求函数f(x)在区间[0,2
已知向量a=(2sin(兀/4-x),cosx),向量b=(cos(兀/4-x),2根号3sinx),记f(x)=向量a*向量b.(1)求f(x)的周期和最小值;(2)若f(x)按向量m平移得到y=2sin2x,求向量m
已知向量a(1/2cos^2+1,1),b(1,根号3/2sinx,cosx)(1)若y=a点乘b,(2)若x属于【-π/6,π/4】,求y的最值,并求出y取得最值时x的值已知向量a(1/2cos^2+1,1),b(1,根号3/2sinxcosx)
已知向量a=(sin2x,2sinx),向量b=(根号3,-sinx),函数f(x)=向量a*向量b求函数最大值和零点的集合
已知向量a=(sinθ,cosθ),向量b=(根号3,3)求|向量a-向量b|的取值范围不要什么画图!
已知向量a=(cos⊙,sin⊙)向量b=(根号3,-1)则/2a向量-b向量/的最大值为?
已知向量A=(cosθ,sinθ),向量B=(根号3,-1)则2向量A-向量B的模的最大值,最小值分别是
已知向量m=(cosx,sinx)和向量n=({根号2}-sinx,cosx),x属于(pi,2pi),且|向量m+向量n|=(8根号2)/5,求cos(x/2+pi/8)
已知向量a=(sinθ,根号3),向量b=(1,-cosθ),-π/2