在梯形ABCD中,AD//BC,E,F分别为AB,DC中点,DE//CG,交EF的延长线于点G(1)求证:四边形DECG是平行四边形(2)当ED平分∠ADC时,求证四边形DECG是矩形.清楚就成.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:24:36
xTJA}咙M6%+lff }I[Mj,RePk"V4M(iv+&4mP(,1s=gf)gg߫Ig{JR>YEO
Bt.0M Gn47yNۯ/Fe
©N;pةnz[[sgҾw~zk%Hj8t:Ʃ`\hl/oz20oAdL"73=f=Lx#|,m<;?_
|19qϠٜΣ' )OH`YV1pň-bՊJZ48E䨜13)%'ed-;N_ *έDc].ʀJ2q$Ų͌b1W$)XDŎjc\@f_Z4)sC*cfhT'4Uwˌ3=
45^܍3R7GPR_Y^wK- mgFw:q5O,,IXa7jPnYg,|%3#]ռjpKcd;0dD15zTSف7gS{/]ݒ|7jۭO{퍯흒@Bzv )?
在梯形ABCD中,AD//BC,E,F分别为AB,DC中点,DE//CG,交EF的延长线于点G(1)求证:四边形DECG是平行四边形(2)当ED平分∠ADC时,求证四边形DECG是矩形.清楚就成.
在梯形ABCD中,AD//BC,E,F分别为AB,DC中点,DE//CG,交EF的延长线于点G
(1)求证:四边形DECG是平行四边形(2)当ED平分∠ADC时,求证四边形DECG是矩形.清楚就成.
在梯形ABCD中,AD//BC,E,F分别为AB,DC中点,DE//CG,交EF的延长线于点G(1)求证:四边形DECG是平行四边形(2)当ED平分∠ADC时,求证四边形DECG是矩形.清楚就成.
证明:(1)∵F是边CD的中点,
∴DF=CF.
∵CG∥DE,
∴∠DEF=∠CGF.
又∵∠DFE=∠CFG,
∴△DEF≌△CGF(AAS),
∴DE=CG,
又∵CG∥DE,
∴四边形DECG是平行四边形.
(2)∵ED平分∠ADC,
∴∠ADE=∠FDE.
∵E、F分别为边AB、DC的中点,
∴EF∥AD.
∴∠ADE=∠DEF.
∴∠DEF=∠EDF,
∴EF=DF=CF.
∴∠FEC=∠ECF,
∴∠EDC+∠DCE=∠DEC.
∵∠EDC+∠DCE+∠DEC=180°,
∴2∠DEC=180°.
∴∠DEC=90°,
又∵四边形DECG是平行四边形,
∴四边形DECG是矩形.
——很高兴为你解答问题,