y=f(x)在R上可倒,且满足xf(x)>-f(x)恒成立,已知a>b,以下哪个选项正确A af(b)>bf(a)B af(a)>bf(b)C af(a)bf(a)写错了~是xf(x)’>-f(x),是x乘以f(x)的导数大于负的f(x)~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:42:00
y=f(x)在R上可倒,且满足xf(x)>-f(x)恒成立,已知a>b,以下哪个选项正确A af(b)>bf(a)B af(a)>bf(b)C af(a)bf(a)写错了~是xf(x)’>-f(x),是x乘以f(x)的导数大于负的f(x)~
xSn@߂7GM$>JUc DNK%DQ %DT`T"bc7jwmmy3f޼Ai6L7/wH.5O,p(s3NX8ZVݷ被kB.SxĴgD7wcVY32+KXgzh=שò{)KB:~x*9J22K8ؓzK

y=f(x)在R上可倒,且满足xf(x)>-f(x)恒成立,已知a>b,以下哪个选项正确A af(b)>bf(a)B af(a)>bf(b)C af(a)bf(a)写错了~是xf(x)’>-f(x),是x乘以f(x)的导数大于负的f(x)~
y=f(x)在R上可倒,且满足xf(x)>-f(x)恒成立,已知a>b,以下哪个选项正确
A af(b)>bf(a)
B af(a)>bf(b)
C af(a)bf(a)
写错了~是xf(x)’>-f(x),是x乘以f(x)的导数大于负的f(x)~

y=f(x)在R上可倒,且满足xf(x)>-f(x)恒成立,已知a>b,以下哪个选项正确A af(b)>bf(a)B af(a)>bf(b)C af(a)bf(a)写错了~是xf(x)’>-f(x),是x乘以f(x)的导数大于负的f(x)~
已知条件有问题:xf(x)>-f(x) 应该是 xf(x)>-f'(x)吧?右边是导数f'(x)?
只要注意到[xf(x)]'=xf(x)+f'(x),那么根据已知条件xf(x)>-f'(x)得到xf(x)]'>0,所以函数 xf(x) 是单调增加的.
a>b,所以af(a)>bf(b)
答案是 B

xf(x)>-f(x)这个条件弄错了,仔细看下

构造函数F(X)=xf(x),因为y=f(x)在R上可导,故F(X)可导,且其导数等于xf(x)’+f(x),有题意,xf(x)’+f(x)>0 所以F(X)单调上升,因为a>b,所以
F(a)>F(b) 所以选B af(a)>bf(b)

若函数y=f(x)在R上可导且满足不等式xf'(x)>-f(x)恒成立,且常数a,b满足a>b,则下列 已知函数y=f(x)在R上可导,满足xf'(x)>-f(x),若a>b,则 y=f(x)在R上可倒,且满足xf(x)>-f(x)恒成立,已知a>b,以下哪个选项正确A af(b)>bf(a)B af(a)>bf(b)C af(a)bf(a)写错了~是xf(x)’>-f(x),是x乘以f(x)的导数大于负的f(x)~ 已知函数f(x)在R上有定义,且满足f(x)+xf(1-x)=x,求f(x)的表达式,求f(x)的值域 已知定义在R上的函数f(x)不恒为0,且对任意x,y属于R,满足xf(y)=yf(x),则f(x)奇偶性如题 若导数y=f(x)在R上可导且满足不等式xf'(x)>-f(x)恒成立,且常数a,b满足a>b,求证:af(a)>bf(b). 已知定义在实数集上的函数f(X),不恒为0,且对任意x.y属于R,满足xf(Y)=yf(X),判断f(X)的奇偶性 已知定义在实数集上的函数f(X),不恒为0,且对任意x.y属于R,满足xf(Y)=yf(X),判断f(X)的奇偶性 关于一道数学导球题若函数y=f(x)在R上可导且满足不等式xf'(x)>-f(x)恒成立.且常数a>b.求证af(a)>bf(b). 已知定义在R上的函数满足:对于任意的实数x y 恒有f(xy)=xf(y)+yf(x).且f(2)=2 则对于n属于正整数.f(-2^n)=? 已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y∈R,有f(xy)=xf(y)+yf(x)问题是若y=f(x)在[0,+∞)上是增函数,且满足f(x)+f(x-1/2) 已知f(x)是定义在R上的不恒为0的函数对于任意的x y属于R有f(xy)=xf(y)+yf(x)1.求f(-1),f(1)的值2.判断函数的奇偶性3.若y=f(x)在[0,+无穷)上是增函数且满足f(x)+f(x-1/2) 已知f(x)是定义在R上的不恒为0的函数对于任意的x y属于R有f(xy)=xf(y)+yf(x)1.求f(-1),f(1)的值2.判断函数的奇偶性3.若y=f(x)在[0,+无穷)上是增函数且满足f(x)+f(x-1/2) 函数f(x)在定义域R内可导,且f(x)满足 f(x)=f(2-x) (x-1)f'(x)>函数f(x)在定义域R内可导,且f(x)满足 ①f(x)=f(2-x) ②(x-1)f'(x)>0 ③f(3)=0 则不等式xf(x)>0的解集为 已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y属于R,有f(xy)=xf(y)+yf(x),若y=f(x)在[0,+无穷大)上是增函数,切满足f(x)+f(x-0.5) 若函数y=f(x)在R上可导,且满足不等式f(x)/x 定义在R上的函数f(x) 满足对任意实数x,y 均有xf(y)+yf(x)=(x+y)f(x)f(y) 求f(x) 若函数f(x)在R上可导,且满足f(x)>xf`(x),则A.3f(x)>f(3) B.3f(1)