如图所示,在三角形ABC中,AB=15,BC=14,S三角形ABC=84 (1)求tanC (2)求sinA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:48:26
如图所示,在三角形ABC中,AB=15,BC=14,S三角形ABC=84 (1)求tanC (2)求sinA
xSj0~`8*F ,Oj7YX%)X!`l-; .&Ʈ+~KVbn{ewJ>^:6yVg)^|16Getˇai:ۼXRqj ({qYX\Y "P]tbԜy4'q)6|yPC3-*hM8HqɊ[JIMS Ψ 0drt lzAt104а-d:K|tdW%dቨh鵊oM8 GoXv f0.Yx^] fm,<01nK,1Qt9%b)oSVݥ2=[XH#Ld`y"pLepLr{`

如图所示,在三角形ABC中,AB=15,BC=14,S三角形ABC=84 (1)求tanC (2)求sinA
如图所示,在三角形ABC中,AB=15,BC=14,S三角形ABC=84 (1)求tanC (2)求sinA

如图所示,在三角形ABC中,AB=15,BC=14,S三角形ABC=84 (1)求tanC (2)求sinA
记住三角形面积的一个公式:S=(1/2)AB*AC*sin∠A=(1/2)AB*BC*sin∠B=(1/2)AC*BC*sin∠C
即面积=(1/2)两边*sin夹角
∵AB=15,BC=14
∴面积S=(1/2)AB*BC*sinB=(1/2)*15*14*sinB=84,
∴sinB=4/5
又∵sin²B+cos²B=1
∴cosB=3/5
∵cosB=(AB²+BC²-AC²)/2AB*BC=(225+196-AC²)/420=3/5
∴AC=√169=13
∵sinA/BC=sinB/AC=sinC/AB
∴sinA/14=(4/5)/13
∴sinA=56/65
cosA=(225+169-196)/2*15*13=33/65
∴tanA=sinA/cosA=56/33
同理:sinC/15=(4/5)/13
∴sinC=12/13
cosC=(169+196-225)/2*13*14=140/364=5/13
∴tanC=sinC/cosC=12/5
综上,tanA=56/33;tanC=12/5

(1)过A作AD⊥BC于点D.
∵S△ABC= BC•AD=84,∴ ×14×AD=84,∴AD=12.
又∵AB=15,∴BD= =9.
∴CD=14-9=5.
在Rt△ADC中,AC= =
(2)过B作BE⊥AC于点E.∵S△ABC= AC•EB=84,
∴BE= .