设{an}是等差数列{bn}是各项都是正数的等比数列且a1=b1=2,a3+b5=36,a5+b3=14求(1)数列{an}{bn}的通项公式(2)数列{an|bn}的前n项和Tn急!!!!!!!!!!!!!!!!!!!!!!!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 06:50:08
xRJ@MMZ=dV?7%祵*TЂHEMěmBkLjOgvR< ֓2y3MP/[:HoƓa/yWI%5\t78;MХ}C&$zDW*E"=hw,e}borዚ}#Izg
5Ug@_nYro;40֩Ȉ5G/sM>"J%
ҰB.zZS>}lE)|¹Xs5]t@(dV挅dݶű)fH0,E N
ELJ*܄
ծr0Ox&mb\Ccga۬ѸYz
设{an}是等差数列{bn}是各项都是正数的等比数列且a1=b1=2,a3+b5=36,a5+b3=14求(1)数列{an}{bn}的通项公式(2)数列{an|bn}的前n项和Tn急!!!!!!!!!!!!!!!!!!!!!!!
设{an}是等差数列{bn}是各项都是正数的等比数列且a1=b1=2,a3+b5=36,a5+b3=14
求(1)数列{an}{bn}的通项公式(2)数列{an|bn}的前n项和Tn
急!!!!!!!!!!!!!!!!!!!!!!!
设{an}是等差数列{bn}是各项都是正数的等比数列且a1=b1=2,a3+b5=36,a5+b3=14求(1)数列{an}{bn}的通项公式(2)数列{an|bn}的前n项和Tn急!!!!!!!!!!!!!!!!!!!!!!!
a3+b5=36.A
a5+b3=14.B
a1+4d+b1q^2=14
2+4d+2q^2=14
4d+2q^2=12
2d+q^2=6
2d=6-q^2.C
B-A
a5-a3+b3-b5=-22
2d+b1q^2-bq^4=-22
2d+2q^2-2q^4+22=0.D
6-q^2+2q^2-2q^4+22=0
-2q^4+q^2+28=0
2q^4-q^2-28=0
(2q^2+7)(q^2-4)=0
q^2=4 {bn}是各项都是正数的等比数列
q=2
d=1
an=a1+(n-1)d=2+n-1=n+1
bn=b1q^(n-1)=2*2^(n-1)=2^n
san=[a1+an]n/2=(2+n+1)/2=(n+3)/2
sTn=b1(1-q^n)/(1-q)=2(1-2^n)/(-1)=2^(n+1)-2
一道 设数列{an}是等差数列.{bn}是各项为正等比数列a1=b1=1,a3+b5=21,a5+b3=131) 求an、bn2)求数列{an/bn}的前n项和
{an},{bn}都是各项为正的数列,对任意的自然数n,都有an,(bn)^2,a(n+1)成等差数列,(bn)^2,a(n+1),[b(n+1)]^2成等比数列(1)求证:{bn}是等差数列(2)若a1=1,b1=√2,Sn=1/a1+1/a2+…+1/an,求Sn
若数列{an},{bn}都是等差数列,求{K(an+bn)}是等差数列
{a} 、{b} 都是各项为正的数列,对任意的正整数n,都有an,bn^2,an+1 成等差数列,bn^2,an+1,bn+1^2成等比{a} 、{b} 都是各项为正的数列,对任意的正整数n,都有an,bn^2,an+1 成等差数列,bn^2,an+1,bn+1^2成等比数列
一道数学题(等差数列)设各项均为正数的无穷数列{an}和{bn}满足:对任意n属于N8,都有2bn=an乘以an+1,且a^2 n+1=bn乘以bn+1求证:{根号bn}是等差数列求思路!设各项均为正数的无穷数列{a[n]}和{b[n]}
设{an}是等差数列,{bn}是等比数列,且0
设{an}是等差数列{bn}是各项都是正数的等比数列且a1=b1=2,a3+b5=36,a5+b3=14求(1)数列{an}{bn}的通项公式(2)数列{an|bn}的前n项和Tn急!!!!!!!!!!!!!!!!!!!!!!!
设{an}的各项都是正数的等比数列,bn=log1/3(下标)an已知b1+b2+b3=3,b1b2b3= -3(1,2,3是下标)求:1 判断数列{bn}是否成等差数列 说明理由2 求数列{an}{bn}的通项公式(其中n为下标)
设数列{an}是各项为正等比数列 求证数列{lgan}为等差数列,并写出首项和公差
如果数列{an}是等差数列,设bn=(1/2)^an,数列{bn}是等比数列吗?
等差数列an中,d≠0,bn是各项为正的等比数列,a1=b1,a3=b3,a7=b5,a15=bm,求m
设数列{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.求{an}通项求{an/bn}前n项和Sn
设各项均为正数的无穷数列an和bn满足2bn=an+an+1且an-1方=bn*bn+1,求证根号bn是等差数列a1=1,a2=2求an和bn的通项公式
已知数列{an},{bn}是各项均为正数的等比数列设an=bn/an(n
{an}是各项为正的等比数列,bn是等差数列,且a1=b1=1,a3+b5=13,a5+b3=21,Sn为an前n项和,求{Sn×bn}前n项和tn
各项和为正数的数列an和bn满足an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列 求证(根号bn)是等差数列
已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通项公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果对任
设an是等差数列,bn是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 求数列an/bn的前项和..