应用拉格朗日乘数法,求空间一点 ( x,y,z) 到平面 Ax+By+Cz=0的距离?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:54:35
应用拉格朗日乘数法,求空间一点 ( x,y,z) 到平面 Ax+By+Cz=0的距离?
xRN@YN̚bnkCt] Wظk(J@@'LY N ɽ9wιd&[E~UTy7n;.x{5?ă?v(JQ2 :F^oܸXTz9~mNVr9F\]?貑C~cXO։

应用拉格朗日乘数法,求空间一点 ( x,y,z) 到平面 Ax+By+Cz=0的距离?
应用拉格朗日乘数法,求空间一点 ( x,y,z) 到平面 Ax+By+Cz=0的距离?

应用拉格朗日乘数法,求空间一点 ( x,y,z) 到平面 Ax+By+Cz=0的距离?
设空间一点 ( x0,y0,z0) 到平面 Ax+By+Cz=0的距离的平方为:
L2=(x-x0)^2+(y-y0)^2+(z-z0)^2 约束条件:Ax+By+Cz=0
构造拉格朗日函数:
L=(x-x0)^2+(y-y0)^2+(z-z0)^2+λ(Ax+By+Cz)
{ 2x-2x0+λA=0
{ 2y-2y0+λB=0
{ 2z-2z0+λC=0
{ Ax+By+Cz=0
联立解得:
x =2*(A*x0+B*y0+C*z0)/(A^2+B^2+C^2)
y =-(-x0*B^2-x0*C^2+A*B*y0+A*C*z0)/(A^2+B^2+C^2)
z =(y0*A^2+y0*C^2-B*A*x0-B*C*z0)/(A^2+B^2+C^2)
代入整理得空间一点 ( x0,y0,z0) 到平面 Ax+By+Cz=0的距离:
d=|A*x0+B*y0+C*z0|/(A^2+B^2+C^2)