当x->0时,x^sinx的极限?如标题,x为底,sinx为指数求此式当x->0时的极限.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 22:31:30
当x->0时,x^sinx的极限?如标题,x为底,sinx为指数求此式当x->0时的极限.
xTMO@+>mmzs/Ta8 )*RZB ( !Ry7Ήзq[/̛7s*MnW5˔cOOfԯU9r6i"u)={S~}G̷Ǹxm*mh'9NuX M'ݜ%HZ`$T&V"(};E;% 1FHMb)HDIDf= fE2= 6[t^lۥkXJ5ޚc*L'b钜HIIV&l %bȐ[%'l207t&$!qhO2ƂGHW=!:*݇iؑ0Ke)_I 7dn?RLd-\p跗$~ W/^_;[+j L&+(q? Y a{Ptd DBBg.zwt?j-N#=`zlDV\.+5Sԛ;AvJ Iz)j_ITa~EMV$! }1 pE뽠cƲE , ϻ]Ş27<Ľ+W$R}wC:XIť+$իV?!rDz7Q֤8 _*z

当x->0时,x^sinx的极限?如标题,x为底,sinx为指数求此式当x->0时的极限.
当x->0时,x^sinx的极限?
如标题,x为底,sinx为指数
求此式当x->0时的极限.

当x->0时,x^sinx的极限?如标题,x为底,sinx为指数求此式当x->0时的极限.
这是未定式0^0型.
设y=x^sinx,取对数得,lny=sinx lnx,
所以 lny=(lnx)/(1/sinx),
因为 当x→0时,sinx~x ,
所以 当x→0时,limlny=lim[(lnx)/(1/sinx)]
=lim[(lnx)/(1/x)]
根据洛必达法则,limlny=lim[(lnx)/(1/x)]
=lim[(1/x)/(-1/x^2)]=lim(-x)=0 (当x→0时).
因为 y=e^lny,而lim y=lim e^lny=e^lim lny(当x→0时),
所以 lim x^sinx=lim y=e^0=1.

设y=x^sinx
lny=sinx*lnx
=lnx/(1/sinx)
利用洛必达法则
=(1/x)/(-cosx/sin^x)
=-sin^x/xcosx
=2sinxcosx/(cosx-xsinx)
把x=0代入
=0
所以lny的极限是0
因此y趋于1
所以X的SINX次方的极限是1

ln(x^sinx)=sinx*lnx
因为x->0时sinx->0,lnx->0,所以sinx*lnx->0即ln(x^sinx)->0
所以x^sinx->1

x->0 lnx->负无穷,所以3楼的解法错误~~
x->0可以理解为 x->0+ 和 x->0-
当x->0+ 可以按照2楼解法 但是当 x->0-时lnx不存在 2楼没有考虑到吧

1.因为当x->0+时
0所以
x^x对上式两边取极限
可得
1=于是x^sinx当x->0+时极限为1
而当x->0-时
x同样可由夹逼原理得到结果

为1
因为0^0=1