当x->0时,x^sinx的极限?如标题,x为底,sinx为指数求此式当x->0时的极限.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 22:31:30
当x->0时,x^sinx的极限?如标题,x为底,sinx为指数求此式当x->0时的极限.
当x->0时,x^sinx的极限?
如标题,x为底,sinx为指数
求此式当x->0时的极限.
当x->0时,x^sinx的极限?如标题,x为底,sinx为指数求此式当x->0时的极限.
这是未定式0^0型.
设y=x^sinx,取对数得,lny=sinx lnx,
所以 lny=(lnx)/(1/sinx),
因为 当x→0时,sinx~x ,
所以 当x→0时,limlny=lim[(lnx)/(1/sinx)]
=lim[(lnx)/(1/x)]
根据洛必达法则,limlny=lim[(lnx)/(1/x)]
=lim[(1/x)/(-1/x^2)]=lim(-x)=0 (当x→0时).
因为 y=e^lny,而lim y=lim e^lny=e^lim lny(当x→0时),
所以 lim x^sinx=lim y=e^0=1.
设y=x^sinx
lny=sinx*lnx
=lnx/(1/sinx)
利用洛必达法则
=(1/x)/(-cosx/sin^x)
=-sin^x/xcosx
=2sinxcosx/(cosx-xsinx)
把x=0代入
=0
所以lny的极限是0
因此y趋于1
所以X的SINX次方的极限是1
ln(x^sinx)=sinx*lnx
因为x->0时sinx->0,lnx->0,所以sinx*lnx->0即ln(x^sinx)->0
所以x^sinx->1
x->0 lnx->负无穷,所以3楼的解法错误~~
x->0可以理解为 x->0+ 和 x->0-
当x->0+ 可以按照2楼解法 但是当 x->0-时lnx不存在 2楼没有考虑到吧
1.因为当x->0+时
0
x^x
可得
1=
而当x->0-时
x
为1
因为0^0=1