一个分数一定可以化为有限小数或无限循环小数.我要的是详细的、严谨的数学证明过程.不是概念性的问题.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 13:44:31
一个分数一定可以化为有限小数或无限循环小数.我要的是详细的、严谨的数学证明过程.不是概念性的问题.
xTn@NVpة (&N4PՆȭE?;p/t5W9Tm؝ݙy̓ڠFG0tfpvEt3g92ٟTqz->FAx5w4^bu"Fk/ދ*d$rUDA1ۓG Ǘf\ߤkR*hE)*%> yovIOb0kh m }ũ&3 fհ .sUAgJ?ޫo5'a0

一个分数一定可以化为有限小数或无限循环小数.我要的是详细的、严谨的数学证明过程.不是概念性的问题.
一个分数一定可以化为有限小数或无限循环小数.
我要的是详细的、严谨的数学证明过程.不是概念性的问题.

一个分数一定可以化为有限小数或无限循环小数.我要的是详细的、严谨的数学证明过程.不是概念性的问题.
命题:分数不会出现无限不循环小数
证明:
我们可以从整数除法的过程中来看看这个问题:
若存在一个无限不循环小数,可以表示成为最简分数p/q
那么,用p除q,是除不尽的,且得到的小数是无限不循环的.
我们从整数除法当中来看除的过程.
除到某一位时,商位k,余数为r.这个余数一定是有限的(比如,10以内,或100以内,或1000以内.由q的条件决定)
那么在下面的除法时,不能再出现这个余数(一旦出现,则结果就回进入循环.)
但是余数是有限的,其上限也是有限的,如10以内,那么余数的出现无非这10个数字,即,不可能出现无限的不同的余数.
所以,分数是一定会进入循环的.
命题得证:分数不会出现无限不循环小数.
所以,分数一定可以化为有限小数或无限循环小数.

我们知道有限小数或无限小数可以先化为分数,请你把0.35 ,35循环化为分数 一个分数可化为有限小数或无限循环小数 一个分数一定可以化为有限小数或无限循环小数.我要的是详细的、严谨的数学证明过程.不是概念性的问题. 分数化为小数,循环节位数小于分母!任何一个最简真分数(分母为n)化为小数时,一定为有限小数或无限不循环小数,如果为无限循环小数,则其循环节位数一定小于n(最大为n-1).本人观点,更 分数一定是有理数吗?为什么?355/113如何循环?有理数包括无限循环小数和有限小数 那任何分数都能写成有限小数或无限循环小数?我有点晕~ 判断:除不尽的分数可能是无限循环小数或无限不循环小数.把一个分数化成小数,可能是有限小数、无限循环小数或是无限不循环小数.小数都可以化成分数.分数都可以化成小数. 如何判定一个分数能否化为有限小数 如何判定一个分数能否化为有限小数 怎样判断分数是否可以化成有限小数或无限小数(无限循环小数),有什么特征吗? 一个分数的分母如果只有质因数2和5,这个分数就一定能化为有限小数, 所有的分数都是有限小数或无限循环小数吗? 为什么所有的分数都是无限循环小数或有限小数 利用一元一次方程可以把一个循环小数化为分数,如将0.35 35循环节 化为分数 无限循环小数都是有理数,即一个无限循环小数可以化为分数,如可以把1.7化为分数.设x=1.7,则10x=17.7 7循环,所以10x-x=17.7 7循环-1.7 7循环 所以9x=16 所以x=9分之16,即1.7 7循环=9分之16、 仿照上面写法 有限小数一定比无限小数小,对还是错? 看一个分数能不能化为有限小数的概念是什么? 无限循环小数0.63循环化为分数是( ) 将0.306化为分数,3和6无限循环.