第一题已知数列{an}{bn}都是由正数组成的等比数列,公比分别为p,q,其中p>q,且p不等于1,q不等于1,设Cn=an+bn,Sn为数列{Cn}的前n项和,求Sn/S(n-1)的极限第二题设数列{an}的首项a1=1,前n项和Sn满足关系式:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 19:12:36
第一题已知数列{an}{bn}都是由正数组成的等比数列,公比分别为p,q,其中p>q,且p不等于1,q不等于1,设Cn=an+bn,Sn为数列{Cn}的前n项和,求Sn/S(n-1)的极限第二题设数列{an}的首项a1=1,前n项和Sn满足关系式:
xVNG~_zgYvT&EHUɺBrŸi F 4h &wIwv͕_ڋ1U^UmD`g7'磣YaS\Y2>w=nD-PBXYxX<,OA"\c?_$AUZk6)8)pms`B* OUиi@ rrnUoP3p/@γ] tx힟ų-:^g+Ǿӿ,d"e)e hpteuJZ)?NKC&ؘ.Y{묀_ݓ'aR9I(p {h%c*;M\m0tqwF-&ѵxbQ~@`5eՎU FAc93 >F_Љ+R]lӟ溅uv㻢QY?MBB6(0 m2FD1 :Ly >eIj))7z \)}(8I!\m@l2㕥n%@}.%9qRL>bgAMj#2\[QtmD+Z.M&6Ol5g?eon)HBo}ՆN<8e_|eO҈pn)~.r74) 9xBEbcz, x{D,Z*J^4nzjvib{Yͣk'N֗yZ@Z(9;#Pa/> L:Nm%P]~'.NaT(

第一题已知数列{an}{bn}都是由正数组成的等比数列,公比分别为p,q,其中p>q,且p不等于1,q不等于1,设Cn=an+bn,Sn为数列{Cn}的前n项和,求Sn/S(n-1)的极限第二题设数列{an}的首项a1=1,前n项和Sn满足关系式:
第一题
已知数列{an}{bn}都是由正数组成的等比数列,公比分别为p,q,其中p>q,且p不等于1,q不等于1,设Cn=an+bn,Sn为数列{Cn}的前n项和,求Sn/S(n-1)的极限
第二题
设数列{an}的首项a1=1,前n项和Sn满足关系式:
3t*Sn-(2t+3)S(n-1)=3t(t>0,n=2,3,4,...)
(1)求证,{an}是等比数列
(2)设数列{an}的公比为f(t),作数列{bn}使得b1=1,bn=f(1/b(n-1))(n=2,3,4...),求bn
(3)求和:b1b2-b2b3+班背-...+b2n-1b2n-b2nb2n+1

第一题已知数列{an}{bn}都是由正数组成的等比数列,公比分别为p,q,其中p>q,且p不等于1,q不等于1,设Cn=an+bn,Sn为数列{Cn}的前n项和,求Sn/S(n-1)的极限第二题设数列{an}的首项a1=1,前n项和Sn满足关系式:
设San,Sbn分别为{an}{bn}前n项的和,有
San=a1(1-p^n)/(1-p),Sbn=b1(1-q^n)/(1-q)
由Cn=an+bn得,Sn=San+Sbn
=a1(1-p^n)/(1-p)+b1(1-q^n)/(1-q)
Sn/S(n-1)=[a1(1-q)+b1(1-q)-a1(1-q)p^n-b1(1-p)q^n]/
[a1(1-q)+b1(1-q)-a1(1-q)p^(n-1)-b1(1-p)q^(n-1))]
数列{an}{bn}都是由正数组成的等比数列,所以p>q>0,根据p与1的关系分两类讨论
1,当1>p>q,时,n—>oo,p^n—>0,q^n—>0,p^(n-1)—>0,q^(n-1)—>0,所以:
Sn/S(n-1)—>[a1(1-q)+b1(1-q)]/ [a1(1-q)+b1(1-q)]=1
2,当p>1时,1/p0,(q/p)^(n-1)—>0,(q/p)^n—>0,所以:
Sn/S(n-1)=[a1(1-q)(1/p)^(n-1)+b1(1-q)(1/p)^(n-1)-a1(1-q)p-b1(1-p)q(q/p)^(n-1)]/
[a1(1-q)(1/p)^(n-1)+b1(1-q)(1/p)^(n-1)-a1(1-q)p-b1(1-p)(q/p)^(n-1))]—>p
综上:当p1时,limSn/S(n-1)= p,
(1)证明:当n>1时
3t*Sn-(2t+3)S(n-1)=3t
3t*S(n+1)-(2t+3)Sn=3t
两式相减得:3t*a(n+1)-(2t+3)*an=0
故,a(n+1)/an=2/3+1/t(常数)
又,3t*S2-(2t+3)S1=3t*(a2+a1)-(2t+3)*a1=3t
整理得:a2/a1=2/3+1/t(常数)
所以,{an}是等比数列
(2)依题意:f(t)=2/3+1/t,所以bn=2/3+b(n-1)
bn-b(n-1)=2/3(常数){bn}是首项为1,公差为2/3的等差数列
所以:bn=1+2(n-1)/3=(1+2n)/3
(3)因为bn公差为2/3 ,所以,b(k+2)-b(k)=4/3,{b2n}是以b2=5/3为首项,4/3为公差的等差数列
原式=b1b2-b2b3+b3b4-b4b5-...+b2n-1b2n-b2nb2n+1
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1 - b2n+1 )
=(-4/3)(b2+b4+…+b2n)
=(-4/3){5n/3+[n*(n-1)/2]*4/3}
=-(8n^2+12n)/9

第一题参考楼上的提示仔细算算
第二题:
(1)
3t*Sn -(2t+3)S(n-1)=3t
3t*S(n-1)-(2t+3)S(n-2)=3t
两式相减 3t*an-(2t+3)a(n-1)=0,则3t*an=(2t+3)a(n-1)
an/a(n-1)=(2t+3)/3t,其中t为常数,所以数列an是等比数列。
(2)
f...

全部展开

第一题参考楼上的提示仔细算算
第二题:
(1)
3t*Sn -(2t+3)S(n-1)=3t
3t*S(n-1)-(2t+3)S(n-2)=3t
两式相减 3t*an-(2t+3)a(n-1)=0,则3t*an=(2t+3)a(n-1)
an/a(n-1)=(2t+3)/3t,其中t为常数,所以数列an是等比数列。
(2)
f(t)=(2t+3)/3t,bn=f(1/b(n-1)),令t=1/b(n-1)代入f(t)化简的bn-b(n-1)=2/3,则bn为等差数列,公差2/3,b1=1,所有bn=2n/3+1/3 。
(3)bn公差为d=2/3
b1b2-b2b3+b3b4-b4b5-...+b2n-1b2n-b2nb2n+1
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1 - b2n+1 )
=2d(b2+b4+…+b2n)
=2d*[n(b2+bn)/2]
=2d*[n(b2+b2+(n-1)*2d]/2
=(8n^2+28n)/9

收起

1.Sn=a1(1-p^n)/(1-p)+b1(1-q^n)/(1-q)
Sn/S(n-1)中分子分母都出以p^(n-1),另n-->无穷
得到极限=p,因为(q/p)<1 它的n次方--->0
2.题太多了,自己算下