求1/2*3+1/3*4+1/4*5+…+1/18*9+1/19*20

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 00:14:35
求1/2*3+1/3*4+1/4*5+…+1/18*9+1/19*20
x){PHXPXHhj?jXdZhY(K-#"}ِf2X-*5E"&`=Ά'>tO? mv=]@Զ{'?ٱ+um}C醍OW=|͚';^.tRϳ9 O' `m  ~s&aF0i` [j802 ٚNZ]rt/t)* u $6l|6c=,&LtlF{j{:a9 o

求1/2*3+1/3*4+1/4*5+…+1/18*9+1/19*20
求1/2*3+1/3*4+1/4*5+…+1/18*9+1/19*20

求1/2*3+1/3*4+1/4*5+…+1/18*9+1/19*20
1/2*3=1/2-1/3
1/3*4=1/3-1/4
.
.
.
.
.
所以原式=1/2-1/3+1/3-1/4.+1/19-1/20
当中的全抵消 就只有第一项和最后项
=9/20

1/2*3+1/3*4+1/4*5+…+1/18*9+1/19*20
=1/2-1/2+1/3-1/4+.....+1/19-1/20
=1/2-1/20
=9/20

=(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/19-1/20)
=1/2-1/20
=9/20

1/2*3+1/3*4+1/4*5+…+1/18*9+1/19*20
= 1/2-1/3+1/3-1/4+1/4-1/5+…+1/18-1/19+1/19-1/20
= 1/2 - 1/20
= 9/20

1/2*3
就是
1/2-1/3
1/3*4
就是
1/3-1/4
明白了吧