设A1,A2,……An∈R^n,证明:向量组A1,A2,……An线性无关当且仅当任一n维向量均可由A1,A2,…An线性表示
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:34:18
x){nΣe@#(.Og3tėw*{kϦ/xںOvLyؽɎ绷@4>)az_,\|."w~ di!tNtÝtP8)@>YgÓK @ӡ=Ovv(<Ɏ]
dj)X]欁¹:zzz:a8 =HF=ٱɎUpS|{;uOvy> O)L{A_\gJ Ϛ
设A1,A2,……An∈R^n,证明:向量组A1,A2,……An线性无关当且仅当任一n维向量均可由A1,A2,…An线性表示
设A1,A2,……An∈R^n,证明:向量组A1,A2,……An线性无关当且仅当任一n维向量均可由A1,A2,…An线性表示
设A1,A2,……An∈R^n,证明:向量组A1,A2,……An线性无关当且仅当任一n维向量均可由A1,A2,…An线性表示
由A1,A2,……An线性无关
而对任一n维向量B, A1,A2,……An,B 线性相关
所以 B 可由 A1,A2,……An 线性表示.
反之, 因为 任一n维向量均可由A1,A2,…An线性表示
所以 n维基本向量组 ε1,...,εn 可由 A1,A2,…An 线性表示
所以两个向量组等价
所以它们的秩相同等于n
所以 A1,A2,…An 线性无关
设A1,A2,……An∈R^n,证明:向量组A1,A2,……An线性无关当且仅当任一n维向量均可由A1,A2,…An线性表示
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1)
用柯西不等式证明:(a1+a2+……+an)/n
设a1,a2,...,an都是正数,证明不等式(a1+a2+...+an)[1/(a1)+1/(a2)+...+1/(an)]>=n^2
已知数列{An}满足A1=0.5,A1+A2+…+An=n^2An(n∈N*),试用数学归纳法证明:An=1/n(n+1)
如何利用柯西不等式证明平方平均不等式设a1,a2,......an属于R+,则a1+a2+....+an乘以1/n≤根号下(a1平方+a2平方+.....an平方除以n),就是证明这个
{an}为数列设n—>无穷大时,lim an=a..请证明:(1) ,x—>无穷大时,lim[(a1+a2+…+an)/n]=a急
设a1,a2,a3…an为任意实数 证明:cos(a1)*cos(a2)*…cos(an)+sin(a1)*sin(a2)*…sin(an)
设a1,a2,a3…an为任意实数 证明:cos(a1)+cos(a2)+…cos(an)+sin(a1)+sin(a2)+…sin(an)
已知a1,a2,a3…an∈R+,且a1a2a3…an=1,求证(1+a1)(1+a2)…(1+an)≥2^n
数列极限证明: 设lim(n->∞)an=a,求证lime(n->∞) (a1*a2……an)^(1/n)=a
数列极限证明:设lim(n->∞)an=a,求证lim(n->∞) (a1*a2……an)^(1/n)=a
设e1,e2,…,en是R^n的标准正交基,若(a1,a2,…,an)=(e1,e2,…,en)P,证明:a1,a2,…,an是R^n的标准正交基的充分必要条件是P为正交矩阵
设n介可逆矩阵A的列向量组为a1,a1,a2,…,an,证明:对于任意n元向量b,向量组a1,a2,…,an,b都线性相关
an=4^n-3^n证明1/a1+1/a2+1/a3+…1/an
调和 几何 算术 平方平均数比较 多元 证明过程证明设a1,a2,….an 是n个正实数,记Hn=n/(1/ a1+1/ a2+……1/ an)(调和平均) Gn =n√(a1a2….an)(几何平均) An=(a1+a2+…...+an)/n (算术平均) Qn=√[(a12+a22+
【高中数学证明题一道】设a1>a2>…>an>an+1,求证1/(a1-a2)+1/(a2-a3)+…+1/(an-an+1)+1/(an+1-a1)>0.设a1>a2>…>an>an+1,求证1/(a1-a2)+1/(a2-a3)+…+1/(an-an+1)+1/(an+1-a1)>0.最好能用上柯西不等式或均值不等式。
设a1,a2,……,an(n>=2)是正实数,且满足a1+a2+……+an