已知函数f(x)=sin(ωx+φ)(0<ω<3,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,求f(x)=sin(ωx+φ)的解析式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:37:48
已知函数f(x)=sin(ωx+φ)(0<ω<3,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,求f(x)=sin(ωx+φ)的解析式
xRKN@ 6Nmqr7\4!D6]VG1*D%,!XL+w.fҙ^Ui?uHiNkCQFp-#%H Z(H^b"zs9˜4?ɩM Cov; &N!I$#:ȯL}WıՃc~p6iWY =7tLJۮHMfG9ezbHt M1ƑPBZ:wM2U6&%p|P"y@(=o=uAJM&= ȓ [Œ\WUyxs6Pq-MH2c%h:[H V^ncIF'XDZǎ!8Ϥ6+0" ӻ

已知函数f(x)=sin(ωx+φ)(0<ω<3,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,求f(x)=sin(ωx+φ)的解析式
已知函数f(x)=sin(ωx+φ)(0<ω<3,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,求f(x)=sin(ωx+φ)的解析式

已知函数f(x)=sin(ωx+φ)(0<ω<3,0≤φ≤π)是R上的偶函数,其图像关于点M(3π/4,0)对称,求f(x)=sin(ωx+φ)的解析式
而sin函数的对称轴是x=kπ+0.5π,因为这是偶函数,所以关于Y轴对称
x=0时,ωx+φ=kπ+0.5π k为整数
即φ=kπ+0.5π 又因为0≤φ≤π 所以k=0 φ=0.5π
sin函数的对称点是(kπ,0)即sin=0时,这可以由图像看出.
所以x=3π/4时,ω(3π/4)+0.5π=kπ k为整数,和前面的k无关
ω=(4k-2)/3 又因为0<ω<3,k取1时ω=2/3 k取2时ω=2
所以f(x)=sin(2x/3+0.5π)或f(x)=sin(2x+0.5π)

f(x)=sin(2/3x+π/2)或者f(x)=sin(2x+π/2)