证明函数y=x+(2/x)在(根号2,+无穷)上是增函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:48:57
xQMK@+ِ,1sNS=x-"ċG=)4*cf/8;Q/Ûq4UTTgS<^CٿAlH2y905ƶ&^4KzP>u b7lѷК&mirt3|ZhgXE7AGa {Y3]
jeyX1K1XuMԠ*/L"[Quyw=oL.]j_q}"O:͕>|
"3FP<ۚYJqi> {\
证明函数y=x+(2/x)在(根号2,+无穷)上是增函数
证明函数y=x+(2/x)在(根号2,+无穷)上是增函数
证明函数y=x+(2/x)在(根号2,+无穷)上是增函数
令√2<x1<x2
f(x2)-f(x1) = 【x2+2/x2】-【x1-2/x1】
= (x2-x1) + 2/x2-2/x1
= (x2-x1) -2(1/x1-1/x2)
= (x2-x1) -2(x2-x1)/(x1x2)
= (x2-x1){1-2/(x1x2)}
= (x2-x1)(x1x2-2)/(x1x2)
∵√2<x1<x2,∴x2-x1>0,x1x2-2>0,x1x2>0
∴f(x2)-f(x1) >0,f(x2)>f(x1)
∴y=x+(2/x)在(根号2,+无穷)上是增函数
学过导数吗
学过就简单了
y'=1-2/x^2>0
x^2>2
x>√2
在(根号2,+无穷)上是增函数