函数f(x)=cx/2x+3(x≠-3/2),满足f[f(x)]=x,则常数c=已知g(x)=1-2x,f[g(x)]=(1-x^2)/x^2(x≠0),那么f(1/2)=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:59:59
函数f(x)=cx/2x+3(x≠-3/2),满足f[f(x)]=x,则常数c=已知g(x)=1-2x,f[g(x)]=(1-x^2)/x^2(x≠0),那么f(1/2)=?
x){ھ iF:i<۽Ŷi X 3Tlt󗦃UEiVi A:/?ّa4&Hl[!ɶZfll_\gu U)zn_-?w̄@N"^Ư9=M(Y |dR03֨(Q UBx`ޓK>{QQ 4XRټd[]do

函数f(x)=cx/2x+3(x≠-3/2),满足f[f(x)]=x,则常数c=已知g(x)=1-2x,f[g(x)]=(1-x^2)/x^2(x≠0),那么f(1/2)=?
函数f(x)=cx/2x+3(x≠-3/2),满足f[f(x)]=x,则常数c=
已知g(x)=1-2x,f[g(x)]=(1-x^2)/x^2(x≠0),那么f(1/2)=?

函数f(x)=cx/2x+3(x≠-3/2),满足f[f(x)]=x,则常数c=已知g(x)=1-2x,f[g(x)]=(1-x^2)/x^2(x≠0),那么f(1/2)=?
3

3

答:设y=f(x)
则y=f(x)=cx/(2x+3)
y=cx/(2x+3)
x=f[f(x)]=f(y)=cy/(2y+3)
所以
cx=2xy+3y
cy=2xy+3x
两式相减得:
c(x-y)=3(y-x)
所以c=-3