cos(xy)=x求隐函数的导数dy/dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 16:43:21
cos(xy)=x求隐函数的导数dy/dx
xN0N"ʞˋX ^XJD;UH`B,Rfo&US`pN0źϾ̊J ӯx]O>f!e0?R;Tm1k^Բ:M(,@&2dDRaKƬʽqӦ,,qszڄ]F'$1d^na=+OP䄢aKe54F0 {A)da߰5R@U/(5tÙ!

cos(xy)=x求隐函数的导数dy/dx
cos(xy)=x求隐函数的导数dy/dx

cos(xy)=x求隐函数的导数dy/dx
cos(xy)=x
两边对x求导:-sin(xy)[y+xy']=1
y+xy'=-1/sin(xy)
xy'=-y-(1/sin(xy))
y'=[-y-(1/sin(xy))]/x

cos(xy)=x.关于x求导:[-sin(xy)]×(y+xy′)=1.===>y+xy′=-1/sin(xy).===>xy'=-y-[1/sin(xy)].===>y'={-y-[1/sin(xy)]}/x.∴(dy)/(dx)=-{y+[1/sin(xy)]}/x

cos(xy)=x
dcos(xy)/d(xy)*d(xy)/dx=dx/dx
-sin(xy)*[y*dx/dx+x*dy/dx]=1
y+x*dy/dx=-csc(xy)
x*dy/dx=-csc(xy)-y
dy/dx=-[y+csc(xy)]/x