斜率为2的直线l与双曲线x²╱3-y²╱2=1交于A、B两点,且AB的绝对值等于4,求直线l的方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:31:23
斜率为2的直线l与双曲线x²╱3-y²╱2=1交于A、B两点,且AB的绝对值等于4,求直线l的方程.
xRN@JȮm4)qOgTEŖx0Q!q@im$DB/H| Kxnåоy93;goUڽ* k{{:J?w9O@1ʼnQB1* L)a1=f#U2u%ݥ[z2nW9f&lZTdR"[TjE69yXZ V, sH6?ȼj&PC ,`Ad6=uY 5恈>oW"7{'"ӚKg9~z #yV:ƍ8RBTд)PHqm'PZ3j<(뀏9u\;#%A|x`E2D唬.Y!>IT=Re7zV=Z}{.xn{(OMU߰cOW8x{Åsa

斜率为2的直线l与双曲线x²╱3-y²╱2=1交于A、B两点,且AB的绝对值等于4,求直线l的方程.
斜率为2的直线l与双曲线x²╱3-y²╱2=1交于A、B两点,且AB的绝对值等于4,求直线l的方程.

斜率为2的直线l与双曲线x²╱3-y²╱2=1交于A、B两点,且AB的绝对值等于4,求直线l的方程.
设l方程为y=2x+b.A点坐标(x1,y1),B点坐标(x2,y2).
|AB|²=(x2-x1)²+(y2-y1)²=5(x2-x1)²=5(x2+x1)²-20x1x2=16.
联立直线l方程和双曲线方程得到方程组
y=2x+b; x²/3-y²/2=1;
把直线方程代入双曲线方程并化简得到
10x²+12bx+3b²+6=0
所以x1+x2=-6b/5,x1x2=(3b²+6)/10
从而得到5(-6b/5)²-20*(3b²+6)/10=16
从而得到b=±(根70)/3
如果您满意我的回答,
手机提问的朋友在客户端右上角评价点【满意】即可!