已知曲线y=x^2的一条切线的斜率为4,求切点的坐标的切线的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:31:21
已知曲线y=x^2的一条切线的斜率为4,求切点的坐标的切线的方程
xJ@_%7Sؘsx*(A^6PIQM`$ Hv7قA]sBB+ж-&U#B7w"#>r/2C(_x>smĚl~-U#\өն[iKA,;RTZV[G񺘀A!xa U`e%,p71r$-?r74=_7i.eyUTK=I j (pUljUhWsiٴ? 

已知曲线y=x^2的一条切线的斜率为4,求切点的坐标的切线的方程
已知曲线y=x^2的一条切线的斜率为4,求切点的坐标的切线的方程

已知曲线y=x^2的一条切线的斜率为4,求切点的坐标的切线的方程
设切点为(x0,x0^2)
f(x)=x^2,则f'(x)=2x
f‘(x0)=2x0=4
则:x0=2
所以,切点坐标为(2,4)
点斜式写出切线方程:y-4=4(x-2)
整理得:y=4x-4

设切点为(x0,x0^2)
f(x)=x^2,则f'(x)=2x
f‘(x0)=2x0=4
则:x0=2
所以,切点坐标为(2,4)
点斜式写出切线方程:y-4=4(x-2)
整理得:y=4x-4

等式两边对X求导,k=dy/dx=2x=4. 所以x=2,y=4,这是切点
由点切式得 切线方程 y=4x-4