设椭圆X²/9+Y²/25=1的两个焦点为F1,F2,若AB是经过椭圆中心的一条弦,求△F1AB面积的最大值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 00:29:14
设椭圆X²/9+Y²/25=1的两个焦点为F1,F2,若AB是经过椭圆中心的一条弦,求△F1AB面积的最大值.
xQN@u"Dڤ]RWL h`A҂ )!s_8t(ͽsϹ49^r:gNJX˓#Go! FLأ2 `~1lh¤wnQn,Cue.-- WP,@K 6%Qibo5^g!L[5VKYUEĺPw㚻C0zUbiQaz_M 촢q-ǻJ<IJ\Bɒh㸍WJJ S#XW_Hd

设椭圆X²/9+Y²/25=1的两个焦点为F1,F2,若AB是经过椭圆中心的一条弦,求△F1AB面积的最大值.
设椭圆X²/9+Y²/25=1的两个焦点为F1,F2,若AB是经过椭圆中心的一条弦,求△F1AB面积的最大值.

设椭圆X²/9+Y²/25=1的两个焦点为F1,F2,若AB是经过椭圆中心的一条弦,求△F1AB面积的最大值.
将F2分别与A,B连接,易知F1AF2B为平行四边形
S△F1AB=1/2*SF1AF2B=S△F1F2A
在△F1F2A中,底边F1F2=2*√(25-9)=8
当A点为椭圆与x轴交点时,△F1F2A的高h取最大值3
此时S△F1F2A=1/2*8*3=12
所以S△F1AB的最大值为12