化简(sin^2x-cos^4x+cos^2x-sin^4x)/(sin^2x-cos^6x+cos^2x-sin^6x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:21:45
化简(sin^2x-cos^4x+cos^2x-sin^4x)/(sin^2x-cos^6x+cos^2x-sin^6x)
x){3̼8 8 mM*4ePd*4m`~ \C~h "HP@hjL՘hB 3(Gk!ajGy6g ^4}>Y{lF{u/۟ڬb뼧zl @!

化简(sin^2x-cos^4x+cos^2x-sin^4x)/(sin^2x-cos^6x+cos^2x-sin^6x)
化简(sin^2x-cos^4x+cos^2x-sin^4x)/(sin^2x-cos^6x+cos^2x-sin^6x)

化简(sin^2x-cos^4x+cos^2x-sin^4x)/(sin^2x-cos^6x+cos^2x-sin^6x)
(sin^2x-cos^4x+cos^2x-sin^4x)/(sin^2x-cos^6x+cos^2x-sin^6x)
=[sinx^2(1-sinx^2)+cosx^2(1-cosx^2)]/[sinx^2(1-sinx^4)+cosx^2(1-cosx^4)]
=2sinx^2cosx^2/[3*sinx^2cosx^2]
=2/3
√希望你能看懂,你能明白, 望采纳,赞同