1)已知sina=4/5,tan(a+b)=1,且a是第二象限的角,那么tanb的值是2)y=1/2sin(2x+pai/3)-sinxcosx的单调递增区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:24:47
1)已知sina=4/5,tan(a+b)=1,且a是第二象限的角,那么tanb的值是2)y=1/2sin(2x+pai/3)-sinxcosx的单调递增区间
xQN@~]fR]Imzۈ0 ir=h CХ+8x67|3cz5uXV+A!Y\=gQ:m/2,J~

1)已知sina=4/5,tan(a+b)=1,且a是第二象限的角,那么tanb的值是2)y=1/2sin(2x+pai/3)-sinxcosx的单调递增区间
1)已知sina=4/5,tan(a+b)=1,且a是第二象限的角,那么tanb的值是
2)y=1/2sin(2x+pai/3)-sinxcosx的单调递增区间

1)已知sina=4/5,tan(a+b)=1,且a是第二象限的角,那么tanb的值是2)y=1/2sin(2x+pai/3)-sinxcosx的单调递增区间
1)由已知得tana=3/4,代入tan(a+b)=(tana+tanb)/1-tana*tanb=1,得tanb=1/7
2)前半部分展开,得1/2sin(2x+π/3)=1/2sin2x*cosπ/3+1/2cos2x*sinπ/3
sinxcosx=1/2sin2x
y=1/2sin(2x+π/3)-sinxcosx=(根号3)/4cos2x-1/4sin2x=1/2cos(2x+π/6)
递增区间:〔-7π/12+kπ,-π/12+kπ〕