证明:sin(-α)sin(丌-α)-tan(-α)cot(α-丌)-2cos^2(-α)+1=sin^2α

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:33:58
证明:sin(-α)sin(丌-α)-tan(-α)cot(α-丌)-2cos^2(-α)+1=sin^2α
x){ٌ>< s5A= nI"D,9DF]Qr~qXX:F"}_`gCE7!p3WF0 sn#PP=T-X.x~ Bҧ Wkk0b!BD yvI]

证明:sin(-α)sin(丌-α)-tan(-α)cot(α-丌)-2cos^2(-α)+1=sin^2α
证明:sin(-α)sin(丌-α)-tan(-α)cot(α-丌)-2cos^2(-α)+1=sin^2α

证明:sin(-α)sin(丌-α)-tan(-α)cot(α-丌)-2cos^2(-α)+1=sin^2α
sin(-α)sin(π-α)-tan(-α)cot(α-π)-2cos^2(-α)+1
=-sinαsinα+tanαcotα-2cos^2(α)+1------------说明:-sinαsinα-cos^2(α)=-1,tanαcotα=1
=1-cos^2(α)
=sin^2α