设tan(α+β)=2/5,tan(β-π/4)=1/4,则tan(α+π/4)的值A.13/18 B.13/22 C.3/22 D.1/6

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 22:49:21
设tan(α+β)=2/5,tan(β-π/4)=1/4,则tan(α+π/4)的值A.13/18 B.13/22 C.3/22 D.1/6
x){n_Ibƹ6iꀹt7h< U{>iG=Cc}C 'md\ l6v64t8Tjvk54utplAˁCHWj?nk=<EqC'̄h 4u5 Aц`" 45@4T<;PwA

设tan(α+β)=2/5,tan(β-π/4)=1/4,则tan(α+π/4)的值A.13/18 B.13/22 C.3/22 D.1/6
设tan(α+β)=2/5,tan(β-π/4)=1/4,则tan(α+π/4)的值
A.13/18 B.13/22 C.3/22 D.1/6

设tan(α+β)=2/5,tan(β-π/4)=1/4,则tan(α+π/4)的值A.13/18 B.13/22 C.3/22 D.1/6
C.3/22
tan[A+(π/4)]=tan{(A+B)-[B-(π/4)]}
tan{(A+B)-[B-(π/4)]}
={tan(A+B)-tan[B-(π/4)]}/{1+〈tan{(A+B)×tan[B-(π/4)]〉}
=[(2/5)-(1/4)]/[1+(2/5)×(1/4)]
=(3/20)/(22/20)
=3/22