tan(α+π/4)=1/2 ,-π/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:03:12
tan(α+π/4)=1/2 ,-π/2
xSN@~Jب ˋՓ$p1i@;=ߡ^ Km5$d~fwOq̊+hb,[$w2O9*0dyvu% *u\(B5;\]d&9qV3zR=nW>񮳗`LKEPsKZ13be"H9= ++<ҵ:bAP`x)6'=U}ubz|*?4/ռq1frY.yOQ{֚ڄQ30:?uC@?(T

tan(α+π/4)=1/2 ,-π/2
tan(α+π/4)=1/2 ,-π/2

tan(α+π/4)=1/2 ,-π/2
[2sin²α+sin(2α)]÷cos(α-π/4)
=(2sin²α+2sinαcosα)/[cosαcos(π/4)+sinαsin(π/4)]
=2(√2)sinα(sinα+cosα)/(cosα+sinα)
=2(√2)sinα
即:[2sin²α+sin(2α)]÷cos(α-π/4)=2(√2)sinα……………………(1)
tan(α+π/4)=1/2
[tanα+tan(π/4)]/[1-tanαtan(π/4)]=1/2
(tanα+1)/(1-tanα)=1/2
2(tanα+1)=1-tanα
3tanα=-1
tanα=-1/3
sinα/cosα=-1/3
3sinα=-cosα
3sinα=-√(1-sin²α)
9sin²α=1-sin²α
sin²α=1/10
sinα=±(√10)/10
因为:-π/2<α<0
所以:sinα=(√10)/10
代入(1),有:
[2sin²α+sin(2α)]÷cos(α-π/4)=2(√2)[(√10)/10]
=(2/5)√5
即:
[2sin²α+sin(2α)]÷cos(α-π/4)=(2/5)√5