求证:(cosαcscα-sinαsecα)/(cosα+sinα)=cscα-secα

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 07:31:54
求证:(cosαcscα-sinαsecα)/(cosα+sinα)=cscα-secα
xMN02TűdT2Q!A]Êbʞ3WHdQn{ifl>T%o4ֺƥniʔxp[_)q2TVJXHH c9gĒ`&uG3)+6N;/ lǰ|V0'AUxZ4YRiQyk@DN\xYXQ^fqyvIf4 *}=^.^n-PTߌ

求证:(cosαcscα-sinαsecα)/(cosα+sinα)=cscα-secα
求证:(cosαcscα-sinαsecα)/(cosα+sinα)=cscα-secα

求证:(cosαcscα-sinαsecα)/(cosα+sinα)=cscα-secα
(cosacsca - sinaseca) / (cosa + sina)
= (cosa/sina - sina/cosa) / (cosa + sina)
= (((cosa)^2 - (sina)^2)) / (sinacosa)) / (cosa + sina)
= ((cosa)^2 - (sina)^2)) / (sinacosa * (cosa + sina))
= (cosa - sina) / (sinacosa)
= 1/sina - 1/cosa = scsa - seca