三角形abc中 已知sinA*sinB=cos^2 (C/2) 则此三角形的形状是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:14:43
三角形abc中 已知sinA*sinB=cos^2 (C/2) 则此三角形的形状是
x){IO.JLJ~c훞_Z$l44v|v \Y- k۳mf~ u]ӤV\Z`d gm q7ҳ3ChC ] Gm'X[C] a:6L Q[] ²hyEl @W

三角形abc中 已知sinA*sinB=cos^2 (C/2) 则此三角形的形状是
三角形abc中 已知sinA*sinB=cos^2 (C/2) 则此三角形的形状是

三角形abc中 已知sinA*sinB=cos^2 (C/2) 则此三角形的形状是
sinAsinB=cos²(C/2)=[1+cosC]/2.===>2sinAsinB=1+cosC=1+cos[180-(A+B)]=1-cos(A+B)=1-cosAcosB+sinAsinB.===>cosAcosB+sinAsinB=cos(A-B)=1.===>A-B=0.===>A=B.===>等腰三角形.