三角形ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且三角形ABC的重心在原点,则过B、C两点的直线方程为………
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 20:53:42
三角形ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且三角形ABC的重心在原点,则过B、C两点的直线方程为………
三角形ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且三角形ABC的重心在原点,则过B、C两点的直线方程为………
三角形ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且三角形ABC的重心在原点,则过B、C两点的直线方程为………
因为点A(-6,8)在抛物线C上,所以抛物线所在的象限为二三或一二,且以x轴为对称轴.
既设抛物线C的方程为y^2=-2p(x-p/2)(p>0),点A(-6,8)带入,得P=4或-16(舍),所以抛物线C的方程为y^2=16-8x
三角形重心的坐标为(0,0),A,B,C三点的坐标分别分(-6,8),(x1,y1),(x2,y2)
由重心坐标得x1+x2-6/3=0,既x1+x2=6
y1+y2+8/3=0,既y1+y2=-8
y1²=16-8x1,y2²=16-8x2,
y1²-y2²=-8(x1-x2),
(y1+y2)(y1-y2)=-8(x1-x2)
y1-y2/x1-x2=-8/y1+y2=1=k
则直线BC方程为y=x+c,与抛物线方程联立得:
x1+x2=-2c-8=6,c=-7
所以直线BC方程为y=x-7
用什么函数啊?过原点为焦点的是2条正比例,过原点的还有二次函数一条抛物线过的
解:
由已知可设抛物线
y^2=2p(x+p/2),
以A(-6,8)代入,易得
y^2=32(x+8).
原点为重心,且A已知,
故易得BC中点M(3,-4).
设BC为:
{x=3+tcosθ,
{y=-4+tsinθ.
代入抛物线整理得,
(sinθ)^2t^2-8(sinθ+4cosθ)t-336=0....
全部展开
解:
由已知可设抛物线
y^2=2p(x+p/2),
以A(-6,8)代入,易得
y^2=32(x+8).
原点为重心,且A已知,
故易得BC中点M(3,-4).
设BC为:
{x=3+tcosθ,
{y=-4+tsinθ.
代入抛物线整理得,
(sinθ)^2t^2-8(sinθ+4cosθ)t-336=0.
因M是中点,故方程两根和为0,即
8(sinθ+4cosθ)/(sinθ)^2=0
→sinθ+4cosθ=0
→tanθ=-4.
故直线BC为
y+4=-4(x-3),
即4x+y-8=0.
收起