设a,b为实数,求a2+2ab+b2-4b+5的最小值,并求此时a与b的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 06:36:16
设a,b为实数,求a2+2ab+b2-4b+5的最小值,并求此时a与b的值
xM 0Rmw)z7nt%+]*0b%pd2o 8( .YL`I$ H)G=n%~dFOpN-4x|DZ3ҽ WQH؝=?;!B鼇2Wx "bf{}feAᛑUwJ 9X-JVLeތU=2?|

设a,b为实数,求a2+2ab+b2-4b+5的最小值,并求此时a与b的值
设a,b为实数,求a2+2ab+b2-4b+5的最小值,并求此时a与b的值

设a,b为实数,求a2+2ab+b2-4b+5的最小值,并求此时a与b的值
a²2+2a+b²-4b+5= (a+1)²+(b-2)²≥0
最小值0
此时a=-1,b=2
a²2+2ab+2b²-4b+5
= (a+b)²+(b-2)²+1≥1
最小值1
此时b=2,a=-2
a²2+ab+b²-4b+5
= (a+b/2)²+3/4(b²-16/3b)+5
= (a+b/2)²+3/4(b-8/3)²+5-16/3
= (a+b/2)²+3/4(b-8/3)²-1/3 ≥-1/3
最小值-1/3
此时b=8/3,a=-4/3