已知x、y是正实数,且x、a1、a2、y成等差数列,x、b1、b2、y成等比数列,则(a1+a2)^2/(b1b2)的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 01:29:13
已知x、y是正实数,且x、a1、a2、y成等差数列,x、b1、b2、y成等比数列,则(a1+a2)^2/(b1b2)的取值范围
xQJ@m7$R~$6Rlhm+Rb ~l)Fjü}oZU1I< Na>KetMiH# KHhh2\\Q HP /{a\hmS |cFK pөn=SJQ1Dfv @p=˲2*RXv|j~eY(o-F8#HDhn(ymWO!bנw\UvS:,sOw߼ښ%

已知x、y是正实数,且x、a1、a2、y成等差数列,x、b1、b2、y成等比数列,则(a1+a2)^2/(b1b2)的取值范围
已知x、y是正实数,且x、a1、a2、y成等差数列,x、b1、b2、y成等比数列,则(a1+a2)^2/(b1b2)的取值范围

已知x、y是正实数,且x、a1、a2、y成等差数列,x、b1、b2、y成等比数列,则(a1+a2)^2/(b1b2)的取值范围
利用等比数列和等差数列性质
a1+a2=x+y
b1*b2=x*y
代入得到原式为:
(x+y)^2/(xy) 其中x,y为正实数
(x+y)^2/(xy)=(x^2+y^2+2xy) /(xy) = (1/y)+(1/x)+2 > 2
因为x,y为正实数,所以没有上限.
取值范围为(2,+∞)