用反证法证明:若a^2+b^2=c^2,则a、b、c不可能都是奇数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:42:05
x){>em
"gY^ggdgcf$ N~i{_6}6cӥϦnI*ҧ9v6s9:9cʀg<ݹٴO}
Uѓ&<ٱi6 WYgÓK!-1n' -&={:^|g}+t}PӋeOvv@u@E/.H̳ `a
用反证法证明:若a^2+b^2=c^2,则a、b、c不可能都是奇数
用反证法证明:若a^2+b^2=c^2,则a、b、c不可能都是奇数
用反证法证明:若a^2+b^2=c^2,则a、b、c不可能都是奇数
假设ABC都是奇数
奇数的平方依然是奇数
2个奇数的和为偶数,所以假设不成立
于是ABC不可能都是奇数.
(继续推,可得出,ABC要么都是偶数,要么2奇1偶)
用反证法证明:若a^2+b^2=c^2,则a.b.c不可能都是奇数
用反证法证明:若a^2+b^2=c^2,则a、b、c不可能都是奇数
用反证法证明,若a^3+b^3=2,求证a+b
用反证法证明:若a,b,c,d属于实数,且ad-bc=1,则a^2+b^2+c^2+d^2+ab+cd不等于1
已知:锐角三角形ABC中,角B=2角C,求证:角A>45度.(用反证法证明)
已知锐角三角形ABC中,角B=2倍的角C,用反证法证明角A>45度
这些怎么用反证法证明1.当a>0,b>0是用反证法证明(a+b)/2≥√ (ab)2.用反证法证明,不存在整数m,n使得m^2=n^2+1998
用反证法证明;若整数系数方程ax^2+bx+C=0(A0)有有理数,则A,B,C中至少有一个是偶数
已知锐角三角形ABC中,角B=2角C,试用反证法证明:角A>45请写出证明过程
用反证法证明:若ax^2+bx+c=0(a不=0)有两个不等实根,则b^2-4ac大于0
用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.
用反证法证明命题:若a>b>0,则a^2>b^2,反设证明是?
反证法(已知a,b,c属于(负无穷,0),请用反证法证明a+1/b,b+1/c,c+1/a)已知a,b,c属于(负无穷,0),请用反证法证明a+1/b,b+1/c,c+1/a它们三个中至少有一个大于等于-2
用反证法证明:若a∥b,b∥c,证明:a∥c
已知a=X2+1/2,b=2-x,c=X2-x+1用反证法证明:a.b.c.中至少有一个不小于1
用反证法证明:如果整系数二次方程ax^2+bx +c=0有有理数根,那么a,b,c至少有一个是偶数一定要用反证法哦,
若正整数a,b满足a*b是奇数,证明不存在正整数c,d,使a2+b2+c2=d2(2是平方.)反证法.
用反证法证明.若√ (a^2)=-a,则a小于等于0