三角函数与边的联系,a²-c²=ac-bc,写成sin²A-sin²C=sinAsinC-sinBsinC,这是什么定理

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:23:30
三角函数与边的联系,a²-c²=ac-bc,写成sin²A-sin²C=sinAsinC-sinBsinC,这是什么定理
xTn@~KJ$7 S/j^!` "AJ1Dið^ rj.l~߬3nN!gcbl5.b7>| ļј :͖> kTCܦpEfuZFY0.R{xjxʀo">=B ĸPÎ<@OT, ,ȼ NPҝ{"GrZ[lnٓ\8Z24XU_Hw]B͈$!E 4s.+RbĜ9{LC+ 7Y bgƕeTiubTυpőڷ5HD41`7]kXyZ^,0i=68^k%a)sѱk^hwjk-$1 [%zdcKj`&'e4EeӸl`%Z_dq^}YlRdwgd2avyBb2(b2b2eC'G*HUyFY_-;>23!e; Nx5pbhE?I8]

三角函数与边的联系,a²-c²=ac-bc,写成sin²A-sin²C=sinAsinC-sinBsinC,这是什么定理
三角函数与边的联系,a²-c²=ac-bc,写成sin²A-sin²C=sinAsinC-sinBsinC,这是什么定理

三角函数与边的联系,a²-c²=ac-bc,写成sin²A-sin²C=sinAsinC-sinBsinC,这是什么定理
用正弦定理
a/sinA=b/sinB=c/sinC=2R
将a=2RsinA b=2RsinB c=2RsinC 代入a²-c²=ac-bc后
(2RsinA) ²-(2RsinC)²=(2RsinA )(2RsinC)-(2RsinB)( 2RsinC)
化简得sin²A-sin²C=sinAsinC-sinBsinC

这是正弦定理 用的是a=2R*sinA b=2R*sinB c=2R*sinC 其中R为外接圆半径
然后计算时约掉R即可
很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!...

全部展开

这是正弦定理 用的是a=2R*sinA b=2R*sinB c=2R*sinC 其中R为外接圆半径
然后计算时约掉R即可
很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!

收起

A/sinA=B/sinB=C/sinC=R,则A=RsinA,B=RsinB,C=RsinC,将A,B,C代入a²-c²=ac-bc,即可得sin²A-sin²C=sinAsinC-sinBsinC,反正就是这样推导出来的,至于什么定理你可以参考高中数学课本即可。