已知x+y+z=1 x2+y2+z2=2 x3+y3+z3=3 求x4+y4+z4=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 15:01:23
已知x+y+z=1 x2+y2+z2=2 x3+y3+z3=3 求x4+y4+z4=?
xUmO@*5&vFM\-E^"D1.ڻ u,bڴwkRSݭX jꊅb+a oZID&͇ S]vdex~MX."aKbL,%ƚO`YhgD\SUFF \4D=0p~o71 @!NfRH$} 0  "1bF1b ALJWxǂx˅2B2oaGM߬Vi=e[ē죉+JG^i xow[m8g.{lmi;cUwx"Òטfϲ~5$7w^ewmAڼ+|t+ LC:_~+yi':iexi@[uV|4"Lx!HA4H0* 1T "Nwsg|Z*Q)/N3e:chiHMkys :"ߜ2j\57X nK[YSռ) 24LkYh4IZ^aLU<$5e#IA\C3vVͩy!w5z2)4$ Jx}pâA7\H|5PbMP0\h\j(t Pp$ %/|QfpPaM_ ={n}_\6?#/a0j@kF A9_{Av_

已知x+y+z=1 x2+y2+z2=2 x3+y3+z3=3 求x4+y4+z4=?
已知x+y+z=1 x2+y2+z2=2 x3+y3+z3=3 求x4+y4+z4=?

已知x+y+z=1 x2+y2+z2=2 x3+y3+z3=3 求x4+y4+z4=?
(x+y+z)²-(x²+y²+z²)=2(xy+yz+zx)=-1,xy+yz+zx=-1/2
x3+y3+z3=3xyz+(x+y+z)(x²+y²+z²-xy-yz-zx)=3xyz+1*(2-(-1/2))=3,xyz=1/6
(x2+y2+z2)²=x4+y4+z4-2x²y²-2y²z²-2x²z²=4,故x4+y4+z4=4+2(x²y²+y²z²+x²z²)
x²y²+y²z²+x²z²=(xy+yz+zx)²-2xyz(x+y+z)=(-1/2)²-2*1/6*1=-1/12
x4+y4+z4=4+2*(-1/12)=23/6
不清的话就追问.晚上好!

实数范围内没有解,可以通过后两个已知式用不等式验证。复数范围可以解
用韦达定理
记关于x,y,z的轮换式的和为[x],[x^2],[xy^2],[xyz]等等
比如,[x]=x+y+z, [x^2]=x^2+y^2+z^2, [xy^2]=xy^2+yz^2+zx^2+x^2y+y^2z+z^2x,依次类推
设x,y,z是方程 t^3-at^2+bt-c=0的三个根...

全部展开

实数范围内没有解,可以通过后两个已知式用不等式验证。复数范围可以解
用韦达定理
记关于x,y,z的轮换式的和为[x],[x^2],[xy^2],[xyz]等等
比如,[x]=x+y+z, [x^2]=x^2+y^2+z^2, [xy^2]=xy^2+yz^2+zx^2+x^2y+y^2z+z^2x,依次类推
设x,y,z是方程 t^3-at^2+bt-c=0的三个根,则a=[x],b=[xy],c=[xyz]
由方程有 [x^4]-a[x^3]+b[x^2]-c[x]=0, 而后三个轮换式是已知,只需要求出a,b,c的值,这可以通过已知求出
[x]^2=[x^2]-2[xy] ……解出[xy]=-1/2
[x]*[x^2]=[x^3]+[xy^2] ……[xy^2]=-1
[x]^3=[x^3]+3[xy^2]+6[xyz] ……解出[xyz]=1/6
所以 a=1 b=-1/2 c=1/6
带入得[x^4]=25/6
思路不难,计算量挺大

收起

4

(x+y+z)²-(x²+y²+z²)=2(xy+yz+zx)=-1,xy+yz+zx=-1/2
x3+y3+z3=3xyz+(x+y+z)(x²+y²+z²-xy-yz-zx)=3xyz+1*(2-(-1/2))=3,xyz=1/6
(x2+y2+z2)²=x4+y4+z4-2x²y...

全部展开

(x+y+z)²-(x²+y²+z²)=2(xy+yz+zx)=-1,xy+yz+zx=-1/2
x3+y3+z3=3xyz+(x+y+z)(x²+y²+z²-xy-yz-zx)=3xyz+1*(2-(-1/2))=3,xyz=1/6
(x2+y2+z2)²=x4+y4+z4-2x²y²-2y²z²-2x²z²=4,故x4+y4+z4=4+2(x²y²+y²z²+x²z²)
x²y²+y²z²+x²z²=(xy+yz+zx)²-2xyz(x+y+z)=(-1/2)²-2*1/6*1=-1/12
x4+y4+z4=4+2*(-1/12)=23/6

收起