已知函数f(x)=x-1/2axˆ2-ln(1+x),其中a∈R (1)求f(x)的单调区间.(2)若f(x)在上[0,﹢∞﹚的最大值是0,求a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 17:11:08
已知函数f(x)=x-1/2axˆ2-ln(1+x),其中a∈R (1)求f(x)的单调区间.(2)若f(x)在上[0,﹢∞﹚的最大值是0,求a的取值范围
xSMO@+#UX\8GpE=l9U(*=&iMD!@p !~LuBgI]S{/k߼yf.8\j7FNrfѕa=ÖA߻ryBB\oU밾#t[ g1EFI[CsfQ]Ȣ"?ݖ;GIMUpLWU܄y4ԓ_T0f`VD@19,0V2 |:9 AD()+39ҦAuWG0/hV&$:j@XBQs2ݍ{:4 `B_oZչ=@6d\,tBw"1fEbsMpI%|ۜFh11f~' S <[=$ﻸ{bǷ<8hIaY7z)6 Q=a"mm3ضUB5:½׾;'JM(Ag~zQ̡

已知函数f(x)=x-1/2axˆ2-ln(1+x),其中a∈R (1)求f(x)的单调区间.(2)若f(x)在上[0,﹢∞﹚的最大值是0,求a的取值范围
已知函数f(x)=x-1/2axˆ2-ln(1+x),其中a∈R (1)求f(x)的单调区间.
(2)若f(x)在上[0,﹢∞﹚的最大值是0,求a的取值范围

已知函数f(x)=x-1/2axˆ2-ln(1+x),其中a∈R (1)求f(x)的单调区间.(2)若f(x)在上[0,﹢∞﹚的最大值是0,求a的取值范围
一、 f(x)=x-1/2axˆ2-ln(1+x),
f'(x)=1- ax - 1/(1+x) ,
f''(x)= - a + 1/(1+x) ˆ2 =1/(1+x) ˆ2 - a
当x=0 时,f'(x)=0 ,f''(x)= 1-a ≠0 ,
故f(x)在x=0有极值 ,极值f(0) = 0 ,
当f'(x)= 1- ax - 1/(1+x) >0 时,即(1+x)(1- ax )> 1
求得:a<1/(1+x),x< (1-a ) / a 时,f(x) 是单调增,x 的区间是(-∞,0] ,
f(x) 的区间是(-∞,0]
同理当f'(x)= 1- ax - 1/(1+x)< 0 时,
求得:a>1/(1+x),x> (1-a ) / a 时 ,f(x) 是单调减,x 的区间是 [0 ,﹢∞﹚,
f(x) 的区间是[0 ,﹢∞﹚
二、因为f(x)在[0,﹢∞﹚上的最大值是0 ,故f(x) 是单调减,
因 f''(0)= 1- a < 0
求得:a的取值范围是 a > 1

他的回答有问题,至少x是大于-1的,取值有问题