已知函数f(x)=(2^x+2^-x)/(2^x-2^-x).判断奇偶性,单调区间,求值域嗯……是问这个函数是增函数还是减函数- -

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:47:04
已知函数f(x)=(2^x+2^-x)/(2^x-2^-x).判断奇偶性,单调区间,求值域嗯……是问这个函数是增函数还是减函数- -
xZ[OY*~ڵ岍f粩2iV۾-%MkNTf{%'SsKL`! i}?S.??ԩkόfvQU?ԝo?c?\]9 +l~aG/bv$A1gN}us7oŠw<3=y²l{d៻vYxׯ[6F؛-]\QB;%EE@o2Ro?CM@j?XGvOWOjSgW͐vBV#@3W=ۮ'S6ߪf ViU[S>CZh`_ʮ*#hAnUjn)̲sӆVxvn L{7 F:˱bu͞j]eU˃t.g =R+GDּ mV}"fm[v|y-lWy茽{q[\m,w=ǎjRn;; V=F-9Xor͹ZG{5|6c7zؼ,Ho5x^;5PiWVB!9RÁGC[> r2ۅ%R>LIݪC! }h89^@Xqζb{o>,-U"yP'B3wqOHk^v[ u{@ӧ+ i4Uu bXӦņLCR ?aOne#@^pu\ (1f$ Hic *U_&bA ̬2ޟfktஞy Težș-nbS#&lGp*t r9 |nb[}+_Wx^%itj-Q'دQiT7΀mFFgs#8Kf;!h`얲S54r_b+;5WxFS2!U.խgD 1 <kp*CIVq@φxBBb Pv,zWާ"|{]2vtq9M 4S%&$fSܿ&t1nc;?8mٙhn"eqT_a06 W{Is+•b7'!̻>>KTOϒ`--y-2 nchy):z`?15)ݓ,@Ah`ϴi;ӶF ~aAzTcId 4@NpHo9wJY!o ` Cn(gҋ s(Iql>)REuV%M4?Z̙c]g)i SBX}&Pw[!Qݿ\,+<"#F(zl=k_&~:Q-Xضc0#Zԗ 8am4j$p 11 ilS"VN;yLQ' ;ߓ#LJ!^i&zǟ4l3dAg思5(0E ZB@lݼ ewZIL !|8q*݈$j H" 4@'`1[{Zgj71~=Ƥ`RDJ4[[1nD.qWqF'[C!;ORBj'5P%TIUU J}g apGd2ewt1hYh 7򷗛)1L^|?Z\Լ__5+ڸ>\]\?Pjwx􍊋V,*>=?G?_LPKI cl&5QUE{t/ (on6w

已知函数f(x)=(2^x+2^-x)/(2^x-2^-x).判断奇偶性,单调区间,求值域嗯……是问这个函数是增函数还是减函数- -
已知函数f(x)=(2^x+2^-x)/(2^x-2^-x).判断奇偶性,单调区间,求值域
嗯……
是问这个函数是增函数还是减函数- -

已知函数f(x)=(2^x+2^-x)/(2^x-2^-x).判断奇偶性,单调区间,求值域嗯……是问这个函数是增函数还是减函数- -
函数值域的若干求法点评
安徽 李庆社
函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛.函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型.下面就函数的值域的求法,举例说如下.
一.观察法
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域.
例1求函数y=3+√(2-3x) 的值域.
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域.
由算术平方根的性质,知√(2-3x)≥0,
故3+√(2-3x)≥3.
∴函数的知域为 .
点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性.
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法.
练习:求函数y=[x](0≤x≤5)的值域.(答案:值域为:{0,1,2,3,4,5})
二.反函数法
当函数的反函数存在时,则其反函数的定义域就是原函数的值域.
例2求函数y=(x+1)/(x+2)的值域.
点拨:先求出原函数的反函数,再求出其定义域.
显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}.
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数.这种方法体现逆向思维的思想,是数学解题的重要方法之一.
练习:求函数y=(10x+10-x)/(10x-10-x)的值域.(答案:函数的值域为{y∣y-1或y1})
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x2+x+2)的值域.
点拨:将被开方数配方成完全平方数,利用二次函数的最值求.
由-x2+x+2≥0,可知函数的定义域为x∈[-1,2].此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]
点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用.配方法是数学的一种重要的思想方法.
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})
四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域.
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域.
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域.
将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)
当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3
当y=2时,方程(*)无解.∴函数的值域为2<y≤10/3.
点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域.常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数.
练习:求函数y=1/(2x2-3x+1)的值域.(答案:值域为y≤-8或y0).
五.最值法
对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域.
例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域.
点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域.
∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小.
当x=-1时,z=-5;当x=3/2时,z=15/4.
∴函数z的值域为{z∣-5≤z≤15/4}.
点评:本题是将函数的值域问题转化为函数的最值.对开区间,若存在最值,也可通过求出最值而获得函数的值域.
练习:若√x为实数,则函数y=x2+3x-5的值域为 ( )
A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)
(答案:D).
六.图象法
通过观察函数的图象,运用数形结合的方法得到函数的值域.
例6求函数y=∣x+1∣+√(x-2)2 的值域.
点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象.
原函数化为 -2x+1 (x≤1)
y= 3 (-1x≤2)
2x-1(x2)
它的图象如图所示.
显然函数值y≥3,所以,函数值域[3,+∞].
点评:分段函数应注意函数的端点.利用函数的图象
求函数的值域,体现数形结合的思想.是解决问题的重要方法.
求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域.
七.单调法
利用函数在给定的区间上的单调递增或单调递减求值域.
例1求函数y=4x-√1-3x(x≤1/3)的值域.
点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域.
设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x
在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}.
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域.
练习:求函数y=3+√4-x 的值域.(答案:{y|y≥3})
八.换元法
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域.
例2求函数y=x-3+√2x+1 的值域.
点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域.
设t=√2x+1 (t≥0),则
x=1/2(t2-1).
于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.
所以,原函数的值域为{y|y≥-7/2}.
点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域.这种解题的方法体现换元、化归的思想方法.它的应用十分广泛.
练习:求函数y=√x-1 –x的值域.(答案:{y|y≤-3/4}
九.构造法
根据函数的结构特征,赋予几何图形,数形结合.
例3求函数y=√x2+4x+5+√x2-4x+8 的值域.
点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域.
原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22
作一个长为4、宽为3的矩形ABCD,再切割成12个单位
正方形.设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,
KC=√(x+2)2+1 .
由三角形三边关系知,AK+KC≥AC=5.当A、K、C三点共
线时取等号.
∴原函数的知域为{y|y≥5}.
点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷.这是数形结合思想的体现.
练习:求函数y=√x2+9 +√(5-x)2+4的值域.(答案:{y|y≥5√2})
十.比例法
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域.
例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域.
点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数.
由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)
∴x=3+4k,y=1+3k,
∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1.
当k=-3/5时,x=3/5,y=-4/5时,zmin=1.
函数的值域为{z|z≥1}.
点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识.
练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域.(答案:{f(x,y)|f(x,y)≥1})
十一.利用多项式的除法
例5求函数y=(3x+2)/(x+1)的值域.
点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和.
y=(3x+2)/(x+1)=3-1/(x+1).
∵1/(x+1)≠0,故y≠3.
∴函数y的值域为y≠3的一切实数.
点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法.
练习:求函数y=(x2-1)/(x-1)(x≠1)的值域.(答案:y≠2)
十二.不等式法
例6求函数Y=3x/(3x+1)的值域.
点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式.
易求得原函数的反函数为y=log3[x/(1-x)],
由对数函数的定义知 x/(1-x)>0
1-x≠0
解得,0<x1.
∴函数的值域(0,1).
点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域.不等式法是重要的解题工具,它的应用非常广泛.是数学解题的方法之一.
以下供练习选用:求下列函数的值域
1.Y=√(15-4x)+2x-5;({y|y≤3})
2.Y=2x/(2x-1). (y1或y0)

奇函数
(-无穷,0)并(0,+无穷)
(-无穷,-1)并(1,+无穷)

f(x)=(2^x+2^-x)/(2^x-2^-x)=(2^2x+1)/(2^2x-1)=(4^x+1)/(4^x-1)
f(-x)=(4^-x+1)/(4^-x-1)=(4^x+1)/(1-4^x)=-f(x)
∴f(x)是奇函数。
f(x)=(4^x+1)/(4^x-1)=(4^x-1+2)/(4^x-1)=1+[2/(4^x-1)]
令x2>x1,且x1,x2...

全部展开

f(x)=(2^x+2^-x)/(2^x-2^-x)=(2^2x+1)/(2^2x-1)=(4^x+1)/(4^x-1)
f(-x)=(4^-x+1)/(4^-x-1)=(4^x+1)/(1-4^x)=-f(x)
∴f(x)是奇函数。
f(x)=(4^x+1)/(4^x-1)=(4^x-1+2)/(4^x-1)=1+[2/(4^x-1)]
令x2>x1,且x1,x2≠0
f(x2)-f(x1)
=2/(4^x2-1)-[2/(4^x1-1)]
=2(4^x1-4^x2)/[(4^x2-1)(4^x1-1)]
∵x2>x1
∴4^x1-4^x2<0
当x1、x2∈(0,+∞)时,4^x2-1>0,4^x1-1>0,(4^x2-1)(4^x1-1)>0
f(x2)-f(x1)<0,f(x2)<f(x1),f(x)单调递减。
当x1、x2∈(-∞,0)时,4^x2-1<0,4^x1-1<0,(4^x2-1)(4^x1-1)>0
f(x2)-f(x1)<0,f(x2)<f(x1),f(x)单调递减。
∴f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递减
但是在(-∞,0)∪(0,+∞)没有单调性。
∵f(x)=1+[2/(4^x-1)]
当x>0时,4^x>1,4^x-1>0,2/(4^x-1)>0,f(x)=1+2/(4^x-1)>1
当x<0时,4^x<1,4^x-1<0,2/(4^x-1)<0,f(x)=1+2/(4^x-1)<1
∴值域是(-∞,1)(1,+∞)

收起

⑴ f(-x)=-f(x)……奇函数,
⑵ f'(x)=-4×㏑2/(2^x-2^-x)²<0 x≠0
f(x)单调减少,x∈(-∞,0),(0,+∞)[两个单调减区间]
⑶ x=㏒[(y+1)/(y-1)][底=2],
(y+1)/(y-1)>0,解得y<-1或者y>1
值域 y∈(-∞,-1)∪(1,+∞)...

全部展开

⑴ f(-x)=-f(x)……奇函数,
⑵ f'(x)=-4×㏑2/(2^x-2^-x)²<0 x≠0
f(x)单调减少,x∈(-∞,0),(0,+∞)[两个单调减区间]
⑶ x=㏒[(y+1)/(y-1)][底=2],
(y+1)/(y-1)>0,解得y<-1或者y>1
值域 y∈(-∞,-1)∪(1,+∞)

收起